Onset of Soret and Dufour Driven Convection in Binary Fluid Mixtures

  • W. Hort
  • S. J. Linz
  • M. Lücke
Part of the NATO ASI Series book series (NSSB, volume 225)


In the last few years a lot of progress has been made to understand convection in binary fluid layers in an external temperature gradient from the experimental1 as well as from the theoretical2–4 side. All this work1–4 was concentrated on liquid mixtures. Recently one of us has shown5 for a layer in an external concentration gradient that the onset of convection is significantly influenced by the different physical properties of liquid and gas mixtures:
  1. (i)

    the Lewis number L, i. e. the ratio of mass diffusivity D and thermal diffusivity κ, in liquid mixtures being of the order 10-2, is of order 1 in gaseous mixtures and

  2. (ii)

    the Dufour coupling of the mass diffusion current into the temperature field equation, is in gases about 104 times larger than in liquid mixtures and can no longer be ignored.



Rayleigh Number Liquid Mixture Conductive State Lewis Number Oscillatory Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e. g. G. Ahlers and I. Rehberg, Phys. Rev. Lett. 56, 1373 (1985)ADSCrossRefGoogle Scholar
  2. 1a.
    H. Gao and R.P. Behringer, Phys. Rev. A 35. 3993 (1987)ADSCrossRefGoogle Scholar
  3. 1b.
    T. S. Sullivan and G. Ahlers, Phys. Rev. Lett. 61, 78 (1988)ADSCrossRefGoogle Scholar
  4. 1c.
    P. Kolodner, C. M. Surko, and H. Williams: Physica D 37, 319 (1989)ADSCrossRefGoogle Scholar
  5. 1d.
    J. Fineberg, E. Moses, and V. Steinberg, Phys. Rev. A 38, 4939 (1988).ADSCrossRefGoogle Scholar
  6. 2.
    S. J. Linz and M. Lücke, Phys. Rev A 35, 3997 (1987)ADSCrossRefGoogle Scholar
  7. 2a.
    S. J. Linz and M. Lücke, Springer Series in Synergetics 41, 292 (1988).CrossRefGoogle Scholar
  8. 3.
    E. Knobloch and D. R. Moore, Phys. Rev. A 37, 860 (1988).ADSCrossRefGoogle Scholar
  9. 4.
    M. C. Cross and K. Kim, Phys. Rev. A 37, 3909 (1988)MathSciNetADSCrossRefGoogle Scholar
  10. 4a.
    M. C. Cross and K. Kim, Phys. Rev. A 38, 529 (1988).MathSciNetADSCrossRefGoogle Scholar
  11. 5.
    S. J. Linz, Phys. Rev. A 40, (1989).Google Scholar
  12. 6.
    W. Hort, S. J. Linz, and M. Lücke (unpublished).Google Scholar
  13. 7.
    See e. g. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids (Keter, Jerusalem, 1976).Google Scholar
  14. 8.
    G. W. T. Lee, P. Lucas, and A. Tyler, J. Fluid Mech. 135, 235 (1983). They considered the influence of the Dufour effect in liquid 3He—4He mixtures.ADSCrossRefGoogle Scholar
  15. 9.
    An early study of the Dufour effect in gaseous mixtures was done by P. L. G. Ybarra and M. G. Velarde, Geophys. Astrophys. Fluid Dyn. 13, 83 (1979) by using a Galerkin truncation for no slip boundary conditions.ADSCrossRefGoogle Scholar
  16. 10.
    J. de Bruyn (private communication).Google Scholar
  17. 11.
    W. Hort, Diploma thesis (Universität Saarbrücken, 1989).Google Scholar
  18. 12.
    S. J. Linz, Ph. D. thesis (Universität Saarbrücken, 1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • W. Hort
    • 1
  • S. J. Linz
    • 1
  • M. Lücke
    • 1
  1. 1.Institut für Theoretische PhysikUniversität des SaarlandesSaarbrückenWest-Germany

Personalised recommendations