Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 225))

Abstract

Various properties of traveling wave (TW) and stationary overturning convection (SOC) are determined for ethanol—water parameters by finite—differences numerical solutions of the basic hydrodynamic field equations subject to realistic horizontal boundary conditions. Bifurcation— and phase diagrams for TW and SOC solutions are presented. Unstable SOC patterns that decay into a stable TW or the conductive state can be stabilized by phase pinning lateral boundaries. The structural changes at the transition TW ↔ SOC are shown. The mean flow, the lateral currents of heat and concentration, and the particle motion associated with a TW are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For an early review see J. K. Platten and J. C. Legros, Convection in Liquids (Springer, Berlin, 1984). For later work we refer to the references in recent experimental (Refs. 2–5,26,29) and theoretical (Refs. 6–20) papers.

    Google Scholar 

  2. R. Heinrichs, G. Ahlers, and D. S. Cannell, Phys. Rev. A 35, 2761 (1987)

    Article  ADS  Google Scholar 

  3. T. S. Sullivan and G. Ahlers, Phys. Rev. Lett. 61, 78 (1988).

    Article  ADS  Google Scholar 

  4. E. Moses and V. Steinberg, Phys. Rev. A 34, 693 (1986)

    Article  ADS  Google Scholar 

  5. J. Fineberg, E. Moses, and V. Steinberg, Phys. Rev. A 38, 4939 (1988).

    Article  ADS  Google Scholar 

  6. P. Kolodner, D. Bensimon, and C. M. Surko, Phys. Rev. Lett. 60, 1723 (1988)

    Article  ADS  Google Scholar 

  7. P. Kolodner and C. M. Surko, Phys. Rev. Lett. 61, 842 (1988).

    Article  ADS  Google Scholar 

  8. O. Lhost and J. K. Platten, Phys. Rev. A 38, 3147 (1988)

    Article  ADS  Google Scholar 

  9. O. Lhost and J. K. Platten, Phys. Rev. A 40, 4552 (1989).

    Article  ADS  Google Scholar 

  10. E. Knobloch and D. R. Moore, Phys. Rev. A 37, 860 (1988)

    Article  ADS  Google Scholar 

  11. M. C. Cross and K. Kim, Phys. Rev. A 37, 3909 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  12. W. Hort, Diplomarbeit, Universität Saarbrücken, 1990 (unpublished).

    Google Scholar 

  13. S. J. Linz and M. Lücke, Phys. Rev A 35, 3997 (1987)

    Article  ADS  Google Scholar 

  14. S. J. Linz and M. Lücke, in Propagation in Systems Far from Equilibrium, edited by J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet, and N. Boccara (Springer, Berlin, 1988), p. 292.

    Chapter  Google Scholar 

  15. S. J. Linz, M. Lücke, H. W. Müller, and J. Niederländer, Phys. Rev. A 38, 5727 (1988).

    Article  ADS  Google Scholar 

  16. M. Lücke, in Far from Equilibrium Phase Transitions, in Lecture Notes in Physics, vol. 319, edited by L. Garrido (Springer, Berlin, 1988), p. 195.

    Chapter  Google Scholar 

  17. S. J. Linz, Ph. D. thesis, Universität Saarbrücken, 1989 (unpublished).

    Google Scholar 

  18. W. Schöpf and W. Zimmermann, Europhys. Lett. 8, 41 (1989)

    Article  ADS  Google Scholar 

  19. W. Schöpf, Diplomarbeit, Universität Bayreuth, 1988 (unpublished).

    Google Scholar 

  20. E. Knobloch, Phys. Rev. A 34, 1538 (1986).

    Article  ADS  Google Scholar 

  21. D. Bensimon, A. Pumir, and B. I. Shraiman, J. Phys. France 50, 3089 (1989).

    Article  Google Scholar 

  22. H. R. Brand, P. C. Hohenberg, and V. Steinberg, Phys. Rev. A 30, 2548 (1984)

    Article  ADS  Google Scholar 

  23. H. R. Brand, P. S. Lomdahl, and A. C. Newell, Physica 23D, 345 (1986).

    ADS  Google Scholar 

  24. M. C. Cross, Phys. Rev. Lett. 57, 2935 (1986).

    Article  ADS  Google Scholar 

  25. A. E. Deane, E. Knobloch, and J. Toomre, Phys. Rev. A 37, 1817 (1988).

    Article  ADS  Google Scholar 

  26. M. Bestehorn, R. Friedrichs, and H. Haken, Z. Phys. B75, 265 (1989).

    Article  ADS  Google Scholar 

  27. W. Barten, M. Lücke, W. Hort, and M. Kamps, Phys. Rev. Lett. 63, 376 (1989). In this paper the correct ordinate labels of Fig. 5a are U(10–2 k/d) and φw(10–3 2π).

    Article  ADS  Google Scholar 

  28. H. Yahata (unpublished).

    Google Scholar 

  29. P. Kolodner, H. Williams, and C. Moe, J. Chem. Phys. 88, 6512 (1988).

    Article  ADS  Google Scholar 

  30. J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, Los Alamos Scientific Laboratory Report No. LA—3425, 1966.

    Google Scholar 

  31. C. W. Hirt, B. D. Nichols, and N. C. Romero, Los Alamos Scientific Laboratory Report No. LA-5652, 1975.

    Google Scholar 

  32. G. Dangelmayr and E. Knobloch, Phil. Trans. R. Soc. Lond. A322, 243 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  33. W. Barten, M. Lücke, and M. Kamps, J. Comp. Phys. (in press).

    Google Scholar 

  34. E. Moses and V. Steinberg, Physica D 37, 341 (1989).

    Article  ADS  Google Scholar 

  35. For our estimates we use T0= 300 K, ΔT = 7 K, α =3–10–4 K-1, β=0.15. Thus for C 0= 8 weight % ethanol in water C0 = 5.7 in reduced units. Furthermore we take a TW at Ψ = — 0.25 near the saddle with extrema <uδT> ≃ 0.06, <uδC> ≃ — 0.07 at z = 1/4 and U ≃ — 0.001 at z = 1/2.

    Google Scholar 

  36. W. Barten, M. Lücke, and M. Kamps, unpublished.

    Google Scholar 

  37. E. Moses and V. Steinberg, Phys. Rev. Lett. 60, 2030 (1988).

    Article  ADS  Google Scholar 

  38. J. M. Ottino, The kinematics of mixing: stretching, chaos, and transport (Cambridge University Press, 1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Barten, W., Lücke, M., Kamps, M. (1990). Structure and Dynamics of Nonlinear Convective States in Binary Fluid Mixtures. In: Busse, F.H., Kramer, L. (eds) Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems. NATO ASI Series, vol 225. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5793-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5793-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5795-7

  • Online ISBN: 978-1-4684-5793-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics