Nonlinear Convection in Binary Mixtures

  • E. Knobloch
  • D. R. Moore
Part of the NATO ASI Series book series (NSSB, volume 225)


The experimental observation of travelling wave convection1 has stimulated much of the recent work, both experimental and theoretical, on convection in binary fluids. Two systems have been extensively studied experimentally: 3He-4He mixtures above the λ-point2, and water-ethanol mixtures3,4. Of these the former cannot be visualized, and the dynamics has to be inferred from point measurements. The experiments reveal the existence of both time-independent patterns5, and a variety of time-dependent travelling waves 3,4. The latter are small amplitude states that come into existence near the Hopf bifurcation from the pure conduction state. This bifurcation occurs in binary fluid mixtures characterized by a sufficiently negative separation ratio S. This ratio provides a measure of the stabilizing concentration gradient set up in response to a destabilizing temperature gradient by the (negative) Soret effect. With increasing Rayleigh number the conduction state loses stability to growing oscillations provided the restoring force due to the concentration gradient is sufficiently strong to overcome viscous dissipation. The instability occurs because heat diffuses faster than concentration, setting up a phase difference between the concentration and temperature fields, which persists into the nonlinear regime, regardless of whether the instability evolves into a travelling or standing pattern6.


Rayleigh Number Hopf Bifurcation Bifurcation Diagram Global Bifurcation Oscillatory Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Walden, P. Kolodner, A. Passner and C. M. Surko: “Traveling waves and chaos in convection in binary fluid mixtures.” Phys. Rev. Lett. 55: 496 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    G. Ahlers and I. Rehberg: “Convection in a binary mixture heated from below.” Phys. Rev. Lett. 56: 1373 (1986)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    V. Steinberg, E. Moses and J. Fineberg: “Spatio-temporal complexity at the onset of convection in a binary fluid.” Nuclear Phys. B (Proc. Suppl.) 2: 109 (1987)Google Scholar
  4. 4.
    P. Kolodner, C. M. Surko and H. Williams: “Dynamics of traveling waves near the onset of convection in binary fluid mixtures.” Physica D 37: 319 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    E. Moses and V. Steinberg: “Competing patterns in a convective binary mixture.” Phys. Rev. Lett. 57: 2018 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    A. E. Deane, E. Knobloch and J. Toomre: “Traveling waves and chaos in thermosolutal convection.” Phys. Rev. A 36: 2862 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    E. Moses and V. Steinberg: “Flow patterns and nonlinear behavior of traveling waves in a convective binary fluid.” Phys. Rev. A 34: 693 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    P. Kolodner, D. Bensimon and C. M. Surko: “Traveling wave convection in an annulus.” Phys. Rev. Lett. 60: 1723 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    E. Knobloch: “Oscillatory convection in binary mixtures.” Phys. Rev. A 34: 1538 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    M. Golubitsky and M. Roberts: “A classification of degenerate Hopf bifurcations with 0(2) symmetry.” J. Diff. Eq. 69: 216 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    E. Knobloch: “On the degenerate Hopf bifurcation with 0(2) symmetry.” Contemp. Math. 56: 193 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    E. Knobloch and M. R. E. Proctor: “Nonlinear periodic convection in double-diffusive systems.” J. Fluid Mech. 108: 291 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    G. Dangelmayr and E. Knobloch: “The Takens-Bogdanov bifurcation with 0(2) symmetry.” Phil. Trans. Roy. Soc. London 322: 243 (1987)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    E. Knobloch, A. E. Deane, J. Toomre and D. R. Moore: “Doubly diffusive waves.” Con-temp. Math. 56: 203 (1986)MathSciNetGoogle Scholar
  15. 15.
    E. Knobloch and D. R. Moore: “A minimal model of binary fluid convection.” Preprint (1989)Google Scholar
  16. 16.
    W. Schöpf and W. Zimmermann: “Multicritical behavior in binary fluid convection.” Europhys. Lett. 8: 41 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    E. Knobloch and D. R. Moore: “Linear stability of experimental Soret convection.” Phys. Rev. A 37: 860 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    C. Bretherton and E. A. Spiegel: “Intermittency through modulational instability.” Phys. Lett. 96A: 152 (1983)ADSGoogle Scholar
  19. 19.
    W. Barten, M. Lücke, W. Hort and M. Kamps: “Fully developed traveling-wave convection in binary fluid mixtures.” Phys. Rev. Lett. 63: 376 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    G. Dangelmayr and E. Knobloch: “Interaction between standing and travelling waves and steady states in magnetoconvection.” Phys. Lett. A 117: 394 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    E. Knobloch and D. R. Moore: “Particle drifts associated with travelling wave convection in binary fluid mixtures.” Bull. Amer. Phys. Soc. 33: 370 (1988)Google Scholar
  22. 22.
    S. J. Linz, M. Lücke, H. W. müller and J. niederländer: “Convection in binary fluid mixtures: traveling waves and lateral currents.” Phys. Rev. A 38: 5727 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    E. Knobloch and J. B. Weiss: Mass transport by wave motion, in “The Internal Solar Angular Velocity,” B. R. Durney and S. Sofia, eds., Reidel, Dordrecht (1987)Google Scholar
  24. 24.
    D. R. Moore and E. Knobloch: “Nonlinear convection in binary mixtures.” Bull. Amer. Phys. Soc. 33: 2285 (1988) and preprint (1989)Google Scholar
  25. 25.
    T. S. Sullivan and G. Ahlers: “Hopf bifurcation to convection near the codimension-two point in a 3He-4He mixture.” Phys. Rev. Lett. 61: 78 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    M. Silber and E. Knobloch: “Pattern selection in steady binary fluid convection.” Phys. Rev. A 38: 1468 (1988)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    F. H. Busse: “Nonlinear properties of thermal convection.” Rep. Prog. Phys. 41: 1929 (1978)ADSCrossRefGoogle Scholar
  28. 28.
    E. Ihrig and M. Golubitsky: “Pattern selection with 0(3) symmetry.” Physica D 13: 1 (1984)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    M. Golubitsky, J. W. Swift and E. Knobloch: “Symmetries and pattern selection in Rayleigh-Bénard convection.” Physica D 10: 249 (1984)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    J. W. Swift: “Bifurcation and symmetry in convection.” Ph.D. Thesis, University of California, Berkeley (1984)Google Scholar
  31. 31.
    M. Silber: “Bifurcations with D 4 symmetry and spatial pattern selection.” Ph.D. Thesis, University of California, Berkeley (1989)Google Scholar
  32. 32.
    M. Roberts, J. W. Swift and D. H. Wagner: ‘The Hopf bifurcation on a hexagonal lattice.” Contemp. Math. 56: 283 (1986)MathSciNetCrossRefGoogle Scholar
  33. 33.
    W. Nagata and J. W. Thomas: “Bifurcation in doubly diffusive systems I. Equilibrium solutions.” SIAM. J. Math. Anal. 17: 91 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    E. Knobloch: “Pattern selection in binary-fluid convection at positive separation ratios.” Phys. Rev. A 40: 1549 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    E. Knobloch: Nonlinear binary fluid convection at positive separation ratios, in “Cooperative Dynamics in Complex Systems,” H. Takayama, ed., Springer-Verlag, Berlin (1989)Google Scholar
  36. 36.
    G. Dangelmayr and E. Knobloch: On the Hopf bifurcation with broken O(2) symmetry, in “The Physics of Structure Formation: Theory and Simulation,” W. Güttinger and G. Dangelmayr, eds., Springer-Verlag, Berlin (1987); Dynamics of slowly varying wave trains in finite geometry, this volumeGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • E. Knobloch
    • 1
  • D. R. Moore
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MathematicsImperial CollegeLondonUK

Personalised recommendations