Skip to main content

Two Topics in Quantum Chromodynamics

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 223))

Abstract

Quantum chromodynamics (QCD) has reached a level of credibility and maturity which deserves textbook status. Indeed, textbooks exist1 and others are on the way.2 Nevertheless, to my mind a textbook treatment of QCD is made much more difficult than that of quantum electrodynamics (QED) because of the confinement problem. Even perturbative QCD—which is all that will really be discussed here—suffers this problem. There is no S-matrix theory of quarks and gluons as there is for QED, as given in the LSZ formalism.3 The concept of “on-mass-shell” or “asymptotic” quark and/or gluon is highly suspect. And the typical “Feynman diagram” used in perturbative QCD contains internal quark and gluon lines and external hadron lines. What does that really mean? How does one derive and justify Feynman-rules for such amplitudes in the absence of good control over the confinement question?

Work supported by Department of Energy contract DE-AC03-76SF00515.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Yndurain, “Quantum Chromodynamics,” Springer-Verlag, New York (1983).

    MATH  Google Scholar 

  2. R. Field, “Applications of Perturbative QCD,” Addison-Wesley (1989); M. Peskin and D. Schroeder, in preparation.

    Google Scholar 

  3. As might be anticipated, I have in mind the line of argument presented in J. Bjorken and S. Drell, “Relativistic Quantum Fields,” McGraw-Hill, New York (1965), chs. 16–17.

    MATH  Google Scholar 

  4. More discussion of essentially this point of view can be found in some old lectures of mind; cf. J. Bjorken, Proc. of the SLAC Summer Institute on Particle Physics, Stanford, CA (1979), A. Mosher, ed.; SLAC-REP-224; also preprint SLAC-PUB-2372.

    Google Scholar 

  5. E. Poggio, H. Quinn, and S. Weinberg, Phys. Rev. D13:1958 (1976).

    ADS  Google Scholar 

  6. V. Fadin, V. Khose, and T. Sjostrand, CERN Preprint CERN-TH-5394/89.

    Google Scholar 

  7. R. P. Feynman, Proc. of the Int. Conf. on High Energy Physics, Aix-en-Provence, vol. 2, E. Cremien-Alcan et al., ed., Saclay, France (1961).

    Google Scholar 

  8. S. Gorishny, A. Kataev, and S. Larin, Phys. Lett, B212:238 (1988).

    ADS  Google Scholar 

  9. See, for example, G. Thooft, “The Whys of Subnuclear Physics, Erice 1977,” A. Zichichi, ed., Plenum, New York (1977);

    Google Scholar 

  10. G. Parisi, Nucl. Phys. B150:163 (1979)

    Article  ADS  Google Scholar 

  11. A. Mueller, Nucl. Phys. B250:327 (1985); G. West, Los Alamos preprint LA-UR-89–3785.

    Article  MathSciNet  ADS  Google Scholar 

  12. For a recent review, see S. Maxfield, Proc. of the XXIV Int. Conf. on High Energy Physics, Munich 1988, Springer-Verlag, Berlin, Heidelberg (1989), p. 661.

    Google Scholar 

  13. An especially complete treatment is given by G. Rossi, U.C. San Diego preprint UCSD-10P10–227.

    Google Scholar 

  14. T. Walsh and P. Zerwas, Nucl Phys. B41:551 (1972)

    Article  ADS  Google Scholar 

  15. T. Walsh and P. Zerwas, Phys. Lett. 44B:195 (1973);

    ADS  Google Scholar 

  16. R. Kingsley, Nucl. Phys. B60:45 (1973).

    Article  ADS  Google Scholar 

  17. G. Altarelli and G. Parisi, Nucl Phys. B126:298 (1977); see also J. Stirling’s lectures, these proceedings.

    Article  ADS  Google Scholar 

  18. E. Witten, Nucl Phys. B120:189 (1977).

    Article  ADS  Google Scholar 

  19. W. Bardeen and A. Buras, Phys. Rev. D20:166 (1979)

    ADS  Google Scholar 

  20. D. Duke and J. Owens, Phys. Rev. D22:2280 (1980).

    ADS  Google Scholar 

  21. T. Uematsu and T. Walsh, Phys. Lett 101B:263 (1981

    ADS  Google Scholar 

  22. T. Uematsu and T. Walsh, Nucl Phys. B199:93 (1982).

    Article  ADS  Google Scholar 

  23. Muta’s book, reference 1, contains a thorough exposition.

    Google Scholar 

  24. More details can be found in Bjorken and Drell, Ref. 4, Chap. 18.

    Google Scholar 

  25. Analyticity in P 2 has recently been utilized by A. Gorski and B. Ioffe, University of Bern preprint BUTP-89/12.

    Google Scholar 

  26. At least to me. This follows either from inspection or from the realization that ρ satisfies the usual renormalization group equation without an inhomogeneous term.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bjorken, J.D. (1990). Two Topics in Quantum Chromodynamics. In: Lévy, M., Basdevant, JL., Jacob, M., Speiser, D., Weyers, J., Gastmans, R. (eds) Particle Physics. NATO ASI Series, vol 223. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5790-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5790-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5792-6

  • Online ISBN: 978-1-4684-5790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics