Skip to main content

Effects of substitution in SAPO-n Frameworks on their Properties as Acid Catalysts

  • Chapter
Guidelines for Mastering the Properties of Molecular Sieves

Part of the book series: NATO ASI Series ((NSSB,volume 221))

Abstract

Various similarities exist between the oxygen chemistry of phosphorus and silicon. The synthetic aluminophosphates are numerous, and may sometimes resemble aluminosilicates. Besides, mineral silicates exist in which (SiO4) is isomorphously replaced by (PO4)1. Barrer and Marshall2,3 found that aluminophosphates often co-precipitate with aluminosilicates but could not find any evidence for the crystallization of silicoaluminophosphate frameworks. Phosphate-rich hydrous aluminosilicate gels crystallize as separate aluminosilicates and aluminophosphates, with no observable isomorphous substitution2. Kühl4,5 also never encountered phosphate substitution in the zeolite framework when using phosphate as a complexing agent or as a buffer in the synthesis mixture. The aim of such research was primarily to synthesize zeolite structures with increased SiO2/Al2O3 ratios by using complexing agents for Al. No evidence was obtained for the substitution of P for Si.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Barrer, “Hydrothermal Chemistry of zeolites”, Acad. Press, New York (1982).

    Google Scholar 

  2. R. M. Barrer, D. J. Marshall, Chemistry of Soil Minerals. Part I, Hydrothermal Crystallisation of some Alkaline Al203-SiO2-P2O5 Compositions, J. Chem. Soc. f 6616 (1965).

    Google Scholar 

  3. R. M. Barrer, D. J. Marshall, Chemistry of Soil Minerals, Part II, Reactions of Phosphates with Kaolin and Fauiasite, J. Chem. Soc., 6621 (1965).

    Google Scholar 

  4. G. H. Kuhl, Infuence of phosphate and other complexing agents on the crystallisation of zeolites, in: “Molecular Sieves”, Soc. Chem. Ind., London (1968).

    Google Scholar 

  5. G. H. Kühl, Crustallization of Zeolites in the Presence of a Complexing Agent, in: “Molecular Sieve Zeolites, -I”, E. M. Flanigen, L. B. Sand, eds., Am. Chem. Soc., Adv. Chem., Ser., 101:76, (1971).

    Google Scholar 

  6. E. M. Flanigen and R. W. Grose, Phosphorus Substitution in Zeolite Frameworks, in: “Molecular Sieve Zeolites-I”, Am. Chem. Soc., Adv. Chem. Ser. 101:76 (1971).

    Google Scholar 

  7. R. M. Barrer, D. J. Marshall, Hydrothermal Chemistry of Silicates. Part XX. The Question of Phosphorus Substitution for Silicon during Zeolite Synthesis, J. Chem. Soc., Dalton Trans., 2126 (1974).

    Google Scholar 

  8. H-P. Rieck, H-J. Kalz, Europaiche. P. A. 0 111 748, (1984).

    Google Scholar 

  9. S. T. Wilson, B. M. Lok and E. M. Flanigen, U. S. Patent 4, 310, 440 (1982).

    Google Scholar 

  10. a, B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, E. M. Flanigen, Crystalline Silicoaluminophosphates, U. S. Patent 4, 440, 871, 1984, 4 b, J. Am. Chem. Soc. 106: 6092 (1984).

    Article  Google Scholar 

  11. J. A. Rabo, R. J. Pellet, P. K. Coughlin, E. S. Shamshoum, Skeletal Rearrangement Reactions of olefins, Parafins and Aromatics over Aluminophophate based Molecular Sieves, in: “Zeolites as Catalysts, Sorbents and Detergent builders”, H. G. Karge and J. Weitkamp, Elsevier, Stud. Surf. Sci. Catal., Elsevier, Amsterdam, Oxford, New York, Tokyo 46:1–18 (1989) and references therein.

    Google Scholar 

  12. P. A. Jacobs and J. A. Martens, “Synthesis of High-Silica Aluminosilicate Zeolites”, Stud. Surf. Sci. Catal. 33, Elsevier, Amsterdam, Oxford, New York, Tokyo (1987).

    Google Scholar 

  13. E. M. Flanigen, R. L. Patton, S. T. Wilson, Stuctural, Synthetic and Physicochemical Concepts in Aluminophosphate-based Molecular Sieves, Stud. Surf. Sci. Catal. 37, P. J. Grobet,. Elsevier, Amsterdam, pp. 13–27 (1988).

    Google Scholar 

  14. E. M. Flanigen, B. M. Lok, R. L. Patton, S. T. Wilson, Aluminophosphate Molecular Sieves and the Periodic Table, Proc. 7th Int. Zeol. Conf., Y. Murakami Kodanska, Tokyo 1986, 103.

    Google Scholar 

  15. W. M. Meier, D. H. Olson, “Atlas of Zeolite Structure Types”, Butterworths, 1987.

    Google Scholar 

  16. I. P, Appleyard, R. K. Harris, F. R. Fitch, 27-Aluminium, 31-phosphorus and 29-Silicium MAS NMR Studies of the silicoaluminophosphate SAPO-5, Chem. Lett. 1985. pp. 1747–1750.

    Google Scholar 

  17. K. J. Chao, L. J. Leu, Catalytic and Physical Properties of Silicon substituted A1PO–5 Molecular Sieves, Stud. Surf. Sci. Catal. 46. 1989, pp. 19–27.

    Article  Google Scholar 

  18. N. J. Tapp, N. B. Milestone, D. M. Bibby, Generation of acid sites in substituted aluminophosphate molecular sieves, Stud. Surf. Sci. Catal. 37. P. J. Grobet, Elsevier, Amsterdam, 1988, pp. 393–402.

    Google Scholar 

  19. D. Freude, H. Ernst, M. Hunger, H. Pfeifer, E. Jahn, Magic-Angle-Spinning NMR studies of zeolite SAPO-5, Phys. hem. Lett. 143, 1988, pp. 477–481.

    Article  CAS  Google Scholar 

  20. C. S. Blackwell, R. L. Patton, Solid-State NMR of Silicoaluminophosphate Molecular sieves and Aluminophosphate Materials, J. Phvs. Chem., 92, 3970.

    Google Scholar 

  21. X. Wang, X. Liu, T. Song, J. Hu, Qiu, Substitution of Si in SAPO-5, Chem. Phys. Lett., 1989, pp. 87–91.

    Google Scholar 

  22. R. A. Van Norstrand, D. S. Santilli, S. I. Zones, “An All-Silica Molecular Sieve That is Iso-Structural with A1P0–5”, in: “Perspectives in Molecular Sieve Science”, A. C. S. Symp. Ser. 368, 1988, pp. 236–245.

    Google Scholar 

  23. J. A. Martens, M. Mertens, P. J. Grobet, P. A. Jacobs, Synthesis and Characterization of Silicon-rich SAPO-5., Stud. Surf. Sci. Catal., 37, P. J. Grobet, Elsevier, Amsterdam, 1988., pp. 97–105.

    Google Scholar 

  24. J. A. Martens, P. A. Jacobs, The Potential and Limitations of the n-decane hydroconversion as a test reaction for characterization of the void space of molecular sieve zeolites, Zeolites, 6, 1986, 334.

    Article  CAS  Google Scholar 

  25. P. A. Jacobs, J. A. Martens, Exploration of the Void Size and Structure of Zeolites and Molecular Sieves Using Chemical Reactions, Proc. 7th Int. Zeol. Conf., Y. Murakami Kodanska, Tokyo, 1986, 23.

    Google Scholar 

  26. J. B. Peri, Surface Chemistry of A1P04-A mixed Oxide of Al and P, Discuss. Faraday Soc., 52, 1971, pp. 55–65.

    Article  Google Scholar 

  27. P. A. Jacobs, J. B. Uytterhoeven, Assignment of the hydroxyl bands in the infrared spectra of zeolites X and Y. 1. Na-H zeolites, J. Chem. Soc., Faraday Trans. I, 1973, 69, 359.

    Article  CAS  Google Scholar 

  28. M. Goepper, F. Guth, L. Delmotte, J. L. Guth, H. Kessler, Effect of template removal and rehydratation on the structure of A1P04 and AlP04based microporous crystalline solids, Stud. Surf. Sci. Catal., 49, P. A; Jacobs etal. (Ed.), Elsevier Amsterdam, 1989, pp. 857–866.

    Google Scholar 

  29. J. M. Bennet, J. V. Smith, Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. 3D nets based on the 4. 6. 12 and (4. 6. 10)4 (6. 6. 10):2D nets, Zeitschrift für Kristallographie. 171, 1985, pp. 65–68.

    Article  Google Scholar 

  30. R. Khoudzami, G. Coudurier, B. F. Mentzen, J. C. Vedrine, Structural, Acidic and Catalytic Propoerties of SAPO-11 Molecular Sieves, Stud. Surf. Sci. Catal., 37, P. J. Grobet Elsevier Amsterdam, 1988, pp. 355–363.

    Google Scholar 

  31. H. Weyda, H. Lerchert, Kinetic Studies of Alumino-phosphate-and Silicoaluminophosphate Molecular Sieves, Stud. Surf. Sci. Catal., 49, P. A; Jacobs etal. (Ed.), Elsevier Amsterdam, 1989, pp. 169–178.

    Google Scholar 

  32. D. Müller, E. Jahn, G. Ladwig, U. Haubenreisser, High-Resolution Solid-State 27A1 and 31P NMR: Correlation between chemical shift and mean Al-O-P angle in A1PO* polymorphs, Chem. Phvs. Lett., 109, 4, 1984, pp. 332–3J6.

    Google Scholar 

  33. P. J. Grobet, H. Geerts, M. Tielen, J. A. Martens, P. A. Jacobs, Framework and non-framework Al species in dealuminated zeolite Y, in: “Zeolites as Catalysts, Sorbents and Detergent builders”, H. G. Karge and J. Weitkamp,Elsevier, Stud. Surf. Sci. Catal., Elsevier, Amsterdam, Oxford, New York, Tokyo 46, 1989, pp. 721–734.

    Google Scholar 

  34. J. A. Martens, C. Janssens, P. J. Grobet, H. K. Beyer, P. A. Jacobs, Isomorphous substitution of silicon in SAPO-37, Stud. Surf. Sci. Catal., 49, P. A? Jacobs, Elsevier Amsterdam, 1989, pp. 215–225.

    Google Scholar 

  35. P. A. Jacobs, J. A. Martens, J. Weitkamp, H. K. Beyer, Shape-seletivity Changes in High-silica Zeolites, Faraday Disc. Chem. Soc., 72, 1981, pp. 353–369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Mertens, M., Martens, J.A., Grobet, P.J., Jacobs, P.A. (1990). Effects of substitution in SAPO-n Frameworks on their Properties as Acid Catalysts. In: Barthomeuf, D., Derouane, E.G., Hölderich, W. (eds) Guidelines for Mastering the Properties of Molecular Sieves. NATO ASI Series, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5787-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5787-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5789-6

  • Online ISBN: 978-1-4684-5787-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics