Skip to main content

The Role of Protein Kinase C Substrate B-50 (GAP-43) in Neurotransmitter Release and Long-Term Potentiation

  • Chapter
Excitatory Amino Acids and Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 268))

Abstract

Long-term potentiation (LTP) is a form of synaptic plasticity, which may be one of the events underlying learning and memory. LTP is triggered by brief, high-frequency stimulation of afferents, resulting in a long-lasting increase in the effectiveness of synaptic transmission (Bliss and Lomo, 1973; Bliss and Lynch, 1988; Brown et al., 1988; Matthies, 1989). Traditionally, LTP has been divided into two phases, the initiation phase and the maintenance phase. At present, three phases can be distinguished: (i) an initiation phase, including several seconds after tetanic stimulation when the events that trigger LTP begin; (ii) a transient phase, lasting about 30 min, during which there is a slow decay of potentiation, which can be evoked by local transmitter application without stimulating the presynaptic terminal; and (iii) a maintenance phase, which can last for hours (Kauer et al., 1988; Malinow et al., 1988a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, R.F., Lovinger, D.M., Colley, P.A., Linden, D.J. and Routtenberg, A., 1986, Translocation of protein kinase C activity may mediate hippocampal long-term potentiation, Science 231: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, K.A., Cimler, B.M., Meier, K.E. and Storm, D.R., 1987, Regulation of calmodulin binding to P-57, J.Biol.Chem. 262: 6108–6113.

    PubMed  CAS  Google Scholar 

  • Allgaier, C. and Hertting, G., 1986, Polymyxin B, a selective inhibitor of protein kinase C, diminishes the release of noradrenaline and the enhancement of release caused by phorbol 12,13-dibutyrate, Naunyn-Schmiedeberg’s Arch. Pharmacol. 334: 218–221.

    Article  PubMed  CAS  Google Scholar 

  • Allgaier, C., Von Kugelgen, O. and Hertting, G., 1986, Enhancement of noradrenaline release by 120-tetradecanoyl phorbol-13-acetate, an activator of protein kinase C. Eur. J. Pharmacol. 129: 389–392.

    Article  PubMed  CAS  Google Scholar 

  • Aloyo, V.J., Zwiers, H. and Gispen, W.H., 1980, Phosphorylation of B-50 by calcium-activated, phospholipid-dependent protein kinase and B-50 kinase, J.Neurochem. 41: 649–653.

    Article  Google Scholar 

  • Andreasen, T.J., Luetje, C.W., Heideman, W. and Storm, D.R., 1983, Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes, Biochemistry 22: 4615–4618.

    Article  PubMed  CAS  Google Scholar 

  • Bartmann, P., Jackisch, R., Hertting, G. and Allgaier, C., 1989, A role for protein kinase C in the electrically evoked release of [3H] -aminobutyric acid in rabbit caudate nucleus, Naunyn-Schmiedeberg’s Arch. Pharmacol. 339: 302–305.

    PubMed  CAS  Google Scholar 

  • Benfenati, F., Bahler, M., Jahn, R. and Greengard, P., 1989, Interactions of synaptsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins, J.Cell Biol. 108: 1863–1872.

    Article  PubMed  CAS  Google Scholar 

  • Benowitz, L.I. and Routtenberg, A., 1987, A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism and synaptic plasticity, Trends Neurosci. 10: 527–532.

    Article  CAS  Google Scholar 

  • Benowitz, L.I., Apostolides, P.J., Perrone-Bizzozero, N., Finklestein, S.P. and Zwiers, H., 1988, Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain, J.Neurosci. 8: 339–352.

    PubMed  CAS  Google Scholar 

  • Bliss, T.V.P. and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dendate area of the anaesthesized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232: 331–356.

    CAS  Google Scholar 

  • Bliss, T.V.P. and Lynch, M.A., 1988, Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms, In: Long-Term Potentiation: from Biophysics to Behaviour (eds. P.W. Landfield and S.A. Deadwyler ), A. Liss, New York, pp. 3–72.

    Google Scholar 

  • Brown, T.H., Chapman, P.F., Kairiss, E.W. and Keenan, C.L., 1988, Long-term synaptic potentiation, Science 242: 724–728.

    Article  PubMed  CAS  Google Scholar 

  • Cimler, B.M., Giebelhaus, D.H., Wakim, B.T., Storm, D.R. and Moon, R.T., 1987, Characterization of murine cDNAs encoding P-57, a neural-specific calmodulin-binding protein, J.Biol.Chem. 262: 12158–12163.

    PubMed  CAS  Google Scholar 

  • Coggins, P.J. and Zwiers, H., 1988, Evidence for a single phosphorylation site in neuronal protein B-50, Soc.Neurosci.Abstr. 14: 452. 7.

    Google Scholar 

  • Cotman, C.W., Haycock, J.W. and White, W.F., 1976, Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid, J.Physiol.(London) 254: 475–505.

    CAS  Google Scholar 

  • Damsma, G., Biessels, P.T.M., Westerink, B.H.C., De Vries, J.B. and Horn, A.S., 1988, Differential effects of 4-aminopyridine and 2,4-diaminopyridine on the in vivo release of acetylcholine and dopamine in freely moving rats measured by intrastriatal dialysis, Eur. J. Pharmacol. 145: 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S.N., Lester, R.A., Reymann, K. and Collingridge, G.L., 1989, Temporally distinct pre-and postsynaptic mechanisms maintain long-term potentiation. Nature 338: 500–503.

    Article  PubMed  CAS  Google Scholar 

  • De Graan, P.N.E., Dekker, L.V., De Wit, M., Schrama, L.H. and Gispen, W.H., 1988a, Modulation of B-50 phosphorylation and polyphosphoinositide metabolism in synaptic plasma membranes by protein kinase C, phorbol diesters and ACTH. J. Rec. Res. 8: 345–361.

    Google Scholar 

  • De Graan, P.N.E., Heemskerk, F.M.J., Dekker, L.V., Melchers, B.P.C., Gianotti, C. and Schrama, L.H., 1988b, Phorbol esters induce long-and short-term enhancement of B-50/GAP-43 phosphorylation in rat hippocampal slices, Neurosci. Res. Commun. 3: 175–182.

    Google Scholar 

  • De Graan, P.N.E., Dekker, L.V., Oestreicher, A.B., Van der Voorn, L. and Gispen, W.H., 1989a, Determination of changes in the phosphorylation state of the neuron-specific protein kinase C substrate B-50 (GAP-43) by quantitative immunoprecipitation. J. Neurochem. 52: 17–23.

    Article  PubMed  Google Scholar 

  • Dekker, L.V., De Graan, P.N.E., Versteeg, D.H.G., Oestreicher, A.B. and Gispen, W.H., 1989a, Phosphorylation of B-50 (GAP-43) is correlated with neurotransmitter release in rat hippocampal slices. J. Neurochem. 52: 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Dekker, L.V., De Graan, P.N.E., De Wit, M., Hens, J.J.H. and Gispen, W.H., 1989b, Depolarization-induced phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat cortical synaptosomes, J.Neurochem., in press.

    Google Scholar 

  • Dekker, L.V., De Graan, P.N.E., Oestreicher, A.B., Versteeg, D.H.G. and Gispen, W.H., 1989c, Inhibition of noradrenaline release by antibodies to B-50 (GAP-43), Nature: in press.

    Google Scholar 

  • Dole al, V. and Tuçek, S., 1983, The effects of 4-aminopyridine and tetrodotoxin on the release of acetylcholine from rat striatal slices. Naunyn-Schmiedeberg’s Arch. Pharmacol. 323: 90–95.

    Article  Google Scholar 

  • Dolphin, A.C., Errington, M.L. and Bliss, T.V.P., 1982, Long-term potentiation of the perforant path in vivo is associated with increased glutamate release, Nature 297: 496–498.

    Article  PubMed  CAS  Google Scholar 

  • Eichberg, J., De Graan, P.N.E., Schrama, L.V., and Gispen, W.H., 1986, Dioctanoylglycerol and phorbol diesters enhance phosphorylation of phosphoprotein B-50 in native synaptic plasma membranes, Biochem.Biophys.Res.Communn. 136: 1007–1012.

    Article  CAS  Google Scholar 

  • Forscher, P., 1989, Calcium and phosphoinositide control of cytoskeletal dynamics, Trends Neurosci., in press.

    Google Scholar 

  • Gibson, G.E. and Manger, T., 1988, Changes in cytosolic free calcium by 1,2,3,4-tetrahydro-5aminoacridine, 4-aminopyridine and 3,4-diaminopyridine, Biochem. Pharmacol. 37: 4191–4196.

    Article  PubMed  CAS  Google Scholar 

  • Gispen, W.H., Leunissen, J.L.M., Oestreicher, A.B., Verkleij, A.J. and Zwiers, H., 1985, Presynaptic localization of B-50 phosphoprotein: the (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism, Brain Res. 328: 381–385.

    Article  PubMed  CAS  Google Scholar 

  • Gispen, W.H., De Graan, P.N.E., Schrama, L.H. and Eichberg, J., 1986, Phosphoprotein B-50 and polyphosphoinositide-dependent signal transduction in brain. In: Phospholipids in the Nervous System: Biochemical and Molecular Pharmacology (Eds. L.A. Horrocks, L. Freysz and G. Toffano), Fidia Research Series, Vol. 4, pp. 31–41, Liviana Press, Padova.

    Chapter  Google Scholar 

  • Gustafsson, B., Galvan, M., Grafe, P. and Wigstrom, H., 1982, A transient outward current in a mammalian central neurone blocked by 4-aminopyridine, Nature (Lond.) 299: 252–254.

    Article  CAS  Google Scholar 

  • Gustafsson, B., Huang, Y.Y. and Wigstrom, H., 1988, Phorbol ester-induced synaptic potentiation differs from long-term potentiation in the guinea pig hippocampus in vitro, Neurosc.Lett. 85: 77–81.

    Article  CAS  Google Scholar 

  • Haas, H.L. and Greene, R.W., 1985, Long-term potentiation and 4-aminopyridine, Cell. Mol. Neurobiol. 5: 297–301.

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk, F.M.J., Schrama, L.H., Gianotti, C., Spierenburg, H., Versteeg, D.H.G. and Gispen, W.H., 1989a, 4-Aminopyridine stimulates B-50 (GAP-43) phosphorylation and [3H]noradrenaline release in rat hippocampal slices, J. Neurochem., in press.

    Google Scholar 

  • Heemskerk, F.M.J., Schrama, L.H. and Gispen, W.H., 1989b, Activation of protein kinase C by 4-aminopyridine dependent on Na+ channel activity in rat hippocampal slices, Neurosci. Lett., in press.

    Google Scholar 

  • Heemskerk, F.M.J., Schrama, L.H., De Graan, P.N.E., Ghijsen, W.E.J.M., Lopes da Silva, F.H. and Gispen W.H., 1989c, 4-Aminopyridine increases B-50 (GAP-43) phosphorylation and calcium levels in rat brain synaptosomes, Soc. Neurosci. Abstr. 15:189.15.

    Google Scholar 

  • Heemskerk, F.M.J., Schrama, L.H., De Graan, P.N.E. and Gispen, W.H., 1989d, 4-Aminopyridine stimulates B-50 (GAP-43) phosphorylation in rat brain synaptosomes, J. Mol. Neurosci., in press.

    Google Scholar 

  • Hu, G.-Y., Hvalby, O., Walaas, S.I., Albert, K.A., Skjeflo, P., Andersen, P. and Greengard, P., 1987, Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation, Nature, 328: 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Izumi, Y., Miyakawa, H., Ito, K. and Kato, H., 1987, Quisqualate and N-methyl-D-aspartate (NMDA) receptors in induction of hippocampal long-term facilitation using conditioning solution, Neurosci. Lett. 83: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L.K., 1987, The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci. 10: 30–34.

    Article  CAS  Google Scholar 

  • Kauer, J.A., Malenka, R.C. and Nicoll, R.A., 1988, NMDA application potentiates synaptic transmission in the hippocampus, Nature 334: 249–252.

    Article  Google Scholar 

  • Kikkawa, U. and Nishizuka, Y., 1986, The role of protein kinase C in transmembrane signalling. Ann. Rev. Cell Biol. 2: 149–178.

    Article  PubMed  CAS  Google Scholar 

  • Kristjansson, G.I., Zwiers, H., Oestreicher, A.B. and Gispen, W.H., 1982, Evidence that the synaptic phosphoprotein B-50 is localized exclusively in nerve tissue, J. Neurochem. 39: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Lee, W.-L, Anwyl, R. and Rowan, M., 1986, 4-Aminopyridine-mediated increase in long-term potentiation in CA1 of the rat hippocampus, Neurosci. Lett. 70: 106–109.

    Google Scholar 

  • Linden, D.J., Wong, K.L., Sheu, F.-S. and Routtenberg, A., 1988, NMDA receptor blockade prevents the increase in protein kinase C substrate (protein Fl) phosphorylation produced by long-term potentiation, Brain Res. 458, 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Linstedt, A.D. and Kelly, R.B., 1989, Overcoming barriers to exocytosis, Trends Neurosci. 10: 446–448.

    Article  Google Scholar 

  • Liu, Y. and Storm, D.R., 1989, Dephosphorylation of neuromodulin by calcineurin, J. Biol. Chem., 264: 12800–12804.

    PubMed  CAS  Google Scholar 

  • Lisman, J.E. and Goldring, M.A., 1988, Feasibility of long-term storage of graded information by the Ca2+/calmodulin dependent protein kinase molecules of postsynaptic density. Proc. Natl. Acad. Sci. 85: 5320–5324.

    Article  PubMed  CAS  Google Scholar 

  • Lovinger, D.M., Akers, R.F., Nelson, R.B., Barnes, C.A., McNaughton, B.L. and Routtenberg, A., 1985, A selective increase in phosphorylation of protein F1, a protein kinase C substrate, directly related to three day growth of long-term potentiation of long term synaptic enhancement, Brain Res. 343: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Lovinger, D.M., Colley, P.A., Akers, R.F., Nelson, R.B. and Routtenberg, A., 1986, Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C, Brain Res. 399: 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M.A. and Baudry, M., 1984, The biochemistry of memory: a new and specific hypothesis. Science 224: 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M.A., Errington, M.L. and Bliss, T.V.P., 1985, Long-term potentiation of synaptic transmission in the dentate gyrus: increased release of [14Cl-glutamate without increase in receptor binding, Neurosci. Lett. 62: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R.C., Madison, D.V. and Nicoll, R.A., 1986, Potentiation of synaptic transmission in the hippocampus by phorbol esters, Nature (Lond.) 321: 175–177.

    Article  CAS  Google Scholar 

  • Malenka, R.C., Ayoub, G.S. and Nicoll, R.A., 1987, Phorbol esters enhance transmitter release in rat hippocampal slices, Brain Res. 403: 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R.C., Kauer, J.A., Perkel, D.J., Mauk, M.D., Kelly, P.T., Nicoll, R.A., and Waxham, M.N., 1989, An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation, Nature 340: 554–557.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., Madison, D.V. and Tsien, R.W., 1988a, Persistent protein kinase activity underlying long-term potentiation, Nature 335: 820–824.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., Madison, D.V. and Tsien, R.W., 1988b, Selective activation of pre-synaptic protein kinase C enhances synaptic transmission in rat hippocampal slices, Soc. Neurosci. Abstr. 14: 12. 2

    Google Scholar 

  • Malinow, R., Schulman, H. and Tsien, R.W., 1989, Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP, Science 245: 862–866.

    Article  PubMed  CAS  Google Scholar 

  • Matthies, H., 1989, In search of cellular mechanisms of memory, Progr. Neurobiol. 32: 277–349.

    Article  CAS  Google Scholar 

  • Matthies, H.J.G., Palfrey, H.C., Hirning, L.D. and Miller, R.J., 1987, Down regulation of protein kinase C in neuronal cells: effects on neurotransmitter release, J. Neurosci. 7: 1198–1206.

    PubMed  CAS  Google Scholar 

  • Miller, S.G. and Kennedy, M.B., 1986, Regulation of brain type II Cat+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44: 861–870.

    Article  PubMed  CAS  Google Scholar 

  • Muller, D., Turnbull, J., Baudry, M. and Lynch, G., 1988, Phorbol ester-induced synaptic facilitation is different than long-term potentiation, Proc. Natl. Acad. Sci. USA 85: 6997–7000.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R.B., Linden, D.J., Hyman, C., Pfenninger, K.H. and Routtenberg, A., 1989, The two major phosphoproteins in growth cones are probably identical to two protein kinase C substrates correlated with the persistence of long-term potentiation, J. Neurosci. 9: 381–389.

    PubMed  CAS  Google Scholar 

  • Nicholls, D.G., Sihra, T.S. and Sanchez-Prieto, J., 1987, Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry, J.Neurochem. 49: 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, D.G., Tibbs, G. and Barrie, A.P., 1989, Cytosolic free calcium in synaptosomes and its coupling to glutamate exocytosis, J. Neurochem. Suppl. 52: 47D.

    Google Scholar 

  • O’Brian, C.A., Arthur, W.L. and Weinstein, I.B., 1987, The activation of protein kinase C by the polyphosphoinositides phosphatidylinositol 4,5-diphosphate and phosphatilylinositol 4-monophophate, FEBS Lett. 214: 339–342.

    Article  PubMed  Google Scholar 

  • Reymann, K.G., Frey, U., Jork, R. and Matthies, H., 1988, Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CAl neurons, Brain Res. 440: 305–314.

    Article  PubMed  CAS  Google Scholar 

  • Rogawski, M.A. and Barker, J.L., 1983, Effects of 4-aminopyridine on calcium aclazientials and calcium current under voltage clamp in spinal neurons, Brain Res. 280: 180–185.

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg, A., 1985, Protein kinase C activation leading to protein Fl phosphorylation may regulate synaptic plasticity by presynaptic terminal growth, Behay.Neurobiol. 44: 186–200.

    CAS  Google Scholar 

  • Routtenberg, A., Colley, P., Linden, D., Lovinger, D., Murakami, K. and Sheu, F.-S., 1986, Phorbol ester promotes growth of synaptic plasticity. Brain Res. 278: 374–378.

    Article  Google Scholar 

  • Schrama, L.H., De Graan, P.N.E., Wadman, W.J., Lopes da Silva, F.H. and Gispen, W.H., 1986, Long-term potentiation and 4-aminopyridine-induced changes in protein and lipid phosphorylation in the hippocampal slice. Progr. Brain Res. 69: 245–257.

    Article  CAS  Google Scholar 

  • Schrama, L.H., De Graan, P.N.E., Dekker, L.V., Oestreicher, A.B., Nielander, H., Schotman, P. and Gispen, W.H., 1988, Functional significance and localization of phsophosite(s) in the neuron-specific protein B-50/GAP-43, Soc.Neurosci.Abstr. 14: 197. 15.

    Google Scholar 

  • Schwartz, J.H. and Greenberg, S.M., 1987, Molecular mechanisms for memory: second messenger induced modification of protein kinases in nerve cells, Ann. Rev. Neurosci. 10: 459–476.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., Rogawski, M.A. and Barker, J.L., 1984, A transient potassium conductance regulates the excitability of cultures hippocampal and spinal neurons, J. Neurosci. 4: 604–609.

    PubMed  CAS  Google Scholar 

  • Skene, J.H.P., 1989, Axonal growth-associated proteins, Ann. Rev. Neurosci. 12: 127–156.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J.H.P. and Virag, I., 1989, Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43, J.Cell Biol. 108: 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Skrede, K.K. and Malthe-Sorenssen, D., 1981, Increased resting and evoked transmitter release following repetitive electrical tetanization of the hippocampus: a biochemical correlate to long-lasting synaptic potentiation, Brain Res. 208: 436–441.

    Article  PubMed  CAS  Google Scholar 

  • Sörensen, R.G., Kleine, L.P. and Mahler, H.R., 1981, Presynaptic localization of phosphoprotein B50, Brain Res. Bull. 7: 57–61.

    Article  PubMed  Google Scholar 

  • Stevens, C.F., 1989, Strengthening the synapses, Nature, 338, 460–461.

    Article  PubMed  CAS  Google Scholar 

  • Tapia, R. and Sitges, M., 1982, Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Res. 250: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Tapia, R., Sitges, M. and Morales, E., 1985, Mechanism of calcium-dependent stimulation of transmitter release by 4-aminopyridine in synaptosomes. Brain Res. 361: 373–382.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S.H., 1982, Aminopyridine block of transient potassium current, J. Gen. Physiol. 80: 1–18 (1982).

    Google Scholar 

  • Tibbs, G.R., Dolly, J.O. and Nicholls, D.G., 1989, Dendrotoxin, 4-aminopyridine and ßbungarotoxin act at common loci but by two distinct mechanism to induce calcium-dependent release of glutamate from guinea pig cerebrocortical synaptosomes, J. Neurochem. 52: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Van Dongen, C.J., Zwiers, H., De Graan, P.N.E. and Gispen, W.H., 1985, Modulation of the activity of purified phosphatidylinositol 4-phosphate kinase by phosphorylated and dephosphorylated B-50 protein, Biochem.Biophys.Res.Commun. 8: 1219–1227.

    Article  Google Scholar 

  • Van Hooff, C.O.M., De Graan, P.N.E., Oestreicher, A.B. and Gispen, W.H., 1988, B-50 phosphorylation and polyphosphoinositide metabolism in nerve growth cone membranes. J. Neurosci. 8: 1789–1795.

    PubMed  Google Scholar 

  • Van Hooff, C.O.M., Boonstra, J., Oestreicher, A.B., De Graan, P.N.E., Holthuis, J.C.M. and Gispen, W.H., 1989a, Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells, J.Cell Biol. 108: 1115–1125.

    Article  PubMed  Google Scholar 

  • Van Hooff, C.O.M., De Graan, P.N.E., Oestreicher, A.B. and Gispen, W.H., 1989b, Muscarinic receptor activation stimulates B-50 phosphorylation in isolated nerve growth cones, J.Neurosci., in press.

    Google Scholar 

  • Van Lookeren Campagne, M., Oestreicher, A.B., Van Bergen en Henegouwen, P.M.P. and Gispen, W.H., 1989a, Ultrastructural immunocytochemical localization of B-50/GAP43, a protein kinase C substrate, in isolated presynaptic nerve terminals and neuronal growth cones, J. Neurocytol., in press.

    Google Scholar 

  • Van Lookeren Campagne, M., Oestreicher, A.B., van Bergen Henegouwen, P.M.P. and Gispen, W.H., 1989b, Localization of B-50/GAP-43 and synaptophysin in the neonatal and adult rat brain, Cell Diff.Devel. 27 suppl.:S197.

    Article  Google Scholar 

  • Versteeg, D.H.G. and Florijn, W.J., 1986, Phorbol 12; 13-dibutyrate enhances electrically stimulated neuromessenger release from rat dorsal hippocampal slices in vitro, Life Sci. 40: 1237–1243.

    Article  Google Scholar 

  • Versteeg, D.H.G. and Ulenkate, H.J.L.M., 1987, Basal and electrically stimulated release of [3H]noradrenaline and [3H]-dopamine from rat amygdala slices in vitro: effects of 413phorbol 12,13-dibutyrate, 4 -phorbol 12,13-didecanoate and polymyxin B, Brain Res. 416: 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Zurgil, N. and Zisapel, N., 1985, Phorbol ester and calcium acts synergistically to enhance neurotransmitter release by brain neurons in culture, FEBS lett. 185: 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Zwiers, H., Schotman, P. and Gispen, W.H., 1980, Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes, J. Neurochem. 34: 1689–1699.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Graan, P.N.E., Schrama, L.H., Heemskerk, F.M.J., Dekker, L.V., Gispen, W.H. (1990). The Role of Protein Kinase C Substrate B-50 (GAP-43) in Neurotransmitter Release and Long-Term Potentiation. In: Ben-Ari, Y. (eds) Excitatory Amino Acids and Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5769-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5769-8_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5771-1

  • Online ISBN: 978-1-4684-5769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics