Skip to main content

Postsynaptic Mechanisms Involved in Long-Term Potentiation

  • Chapter
Excitatory Amino Acids and Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 268))

Abstract

Long-term potentiation (LTP) is a persistent enhancement of synaptic transmission observed at excitatory synapses in the mammalian hippocampus (Bliss and Lomo, 1973). This phenomenon is one of the most striking examples of synaptic plasticity in the vertebrate brain, and has been intensively studied as a model for learning and memory. LTP can be divided into two parts, the triggering or initiation events, and the long-lasting alteration in synaptic strength. In the past six years a considerable body of work has clarified some of the processes involved in triggering LTP, and it has become widely accepted that these processes are localized to the postsynaptic neuron. In contrast, the processes responsible for maintaining the potentiation over time are not as clearly understood, and the synaptic site of these processes remains controversial. This chapter will focus on work from our laboratory studying the cellular mechanisms involved in LTP at the Schaffer collateral-pyramidal cell synapse in the CA1 region of the hippocampal slice preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, R. E., Lovinger, D. M., Colley, P. A., Linden, D. J. and Routtenberg, A., 1986, Translocation of protein kinase C activity may mediate hippocampal long-term potentiation, Science 231: 587.

    Article  PubMed  CAS  Google Scholar 

  • Ascher, P. and Nowak, L., 1988, The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture, J. Physiol 399: 247.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P. and Lemo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol 232: 331.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., Douglas, R. M., Errington, M. L., and Lynch, M. A., 1986, Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats, J. Physiol 377: 391.

    PubMed  CAS  Google Scholar 

  • Chang, F.-F., and Greenough, W. T., 1984, Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice, Brain Res. 309: 35.

    Article  PubMed  CAS  Google Scholar 

  • Coan, E. J. and Collingridge, G. L., 1985, Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus, Neurosci. Lett 53: 21.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, G. L., Kehl, S. J. and McLennan, H., 1983, Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus, J. Physiol 334: 33.

    PubMed  CAS  Google Scholar 

  • Forsythe, I. D. and Westbrook, G. L., 1988, Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on mouse cultured central neurones, J. Physiol 396: 515.

    PubMed  CAS  Google Scholar 

  • Gustafsson, B., Wigström, H., Abraham,W. C. and Huang, Y.-Y., 1987, Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials, J. Neurosci 7: 774.

    CAS  Google Scholar 

  • Hu, G. -Y., Hvalby, O., Walaas, S.I., Albert, K. A., Skjeflo, P., Andersen, P., and Greengard, P., 1987, Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation, Nature, 328: 426.

    Article  PubMed  CAS  Google Scholar 

  • Jahr, C. E. and Stevens, C. F., 1987, Glutamate activates multiple single channel conductances in hippocampal neurones, Nature 325: 522.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J. A., Malenka, R. C. and Nicoll, R. A., 1988a, A persistent postsynaptic modification mediates long-term potentiation in the hippocampus, Neuron 1: 911.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J. A., Malenka, R. C. and Nicoll, R. A., 1988b, NMDA application potentiates synaptic transmission in the hippocampus, Nature 334: 250.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P. T., McGuinness, T. L., and Greengard, P., 1984, Evidence that the major postsynaptic density protein is a component of a Cat+/calmodulin-dependent protein kinase, Proc. Natl. Acad. Sci. USA 81: 945.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P. T., Weinberger, R. P., and Waxham, M. N., 1988, Active site-directed inhibition of Cat+ /calmodulin-dependent protein kinase type II by a bifunctional calmodulin-binding peptide, Proc. Natl. Acad. Sci USA 85: 4991.

    Article  PubMed  CAS  Google Scholar 

  • Kelso, S. R., Ganong, A. H. and Brown, T. H., 1986, Hebbian synapses in hippocampus, Proc. Natl. Acad. Sci. USA 83: 5326.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M. B., Bennett, M. K., and Erondu, N. E., 1983, Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase, Proc. Natl. Acad. Sci. USA 80: 7357.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S. Schottler, F., Oliver, M., and Lynch, G., 1980, Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol 44: 247.

    CAS  Google Scholar 

  • Lovinger, D. M., Wong, K. L., Murakami, K. and Routtenberg, A., 1987, Protein kinase C inhibitors eliminate hippocampal long-term potentiation, Brain Res. 436: 177.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G. and Baudry, M., 1984, The biochemistry of memory: a new and specifichypothesis, Science 224: 1057.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G., J. Larson, S. Kelso, G. Barrioneuevo and F. Schottler, 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature 305: 719.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. A., Clements, M., Errington, M. L., and Bliss, T. V. P., 1988, Increased hydrolysis of phosphatidylinositol-4,5-bisphosphate in long-term potentiation, Neurosci. Lett 84: 291.

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A. B., Mayer, M. L., Westbrook, G.L., Smith, S. J. and Barker. J. L., 1986, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature 321: 519.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R. C., Kauer, J. A., Zucker, R. S. and Nicoll, R. A., 1988, Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission, Science 242: 81.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R. C., Kauer, J. A., Zucker, R. S. and Nicoll, R. A., 1988, Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission, Science 242: 81.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R. C., Kauer, J. A., Zucker, R. S. and Nicoll, R. A., 1988, Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission, Science 242: 81.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., Madison, D. V. and Tsien, R. W., 1988, Persistent protein kinase activity underlying long-term potentiation, Nature 335: 820

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M. L., Westbrook, G. L. and Guthrie, P. B., 1984, Voltage-dependent block by Mgt+ of NMDA responses in spinal cord neurones, Nature 309: 262.

    Article  Google Scholar 

  • Mayer, M. L., MacDermott, A. B., Westbrook, G. L., Smith, S. J. and Barker, J. L., 1987, Agonistand voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp, J. Neurosci 7: 3230.

    PubMed  CAS  Google Scholar 

  • Mayer, M. L. and Westbrook, G. L., 1987, Permeation and block of N-methyl-D-aspartatic acid receptor channels by divalent cations in mouse central neurones, J. Physiol 394: 501.

    PubMed  CAS  Google Scholar 

  • Miller, S. G. and Kennedy, M. B., 1986, Regulation of brain type II Cat+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch, Cell 44: 861.

    Article  PubMed  CAS  Google Scholar 

  • Muller, D. and Lynch, G., 1988, Long-term potentiation differentially affects two components of synaptic responses in hippocampus, Proc. Natl. Acad. Sci. USA 85: 9346.

    Article  PubMed  CAS  Google Scholar 

  • Muller, D., Joly, M., and Lynch, G., 1988, Contributions of quisqualate and NMDA receptors to the induction and expression of LTP, Science, 242: 1694–1697.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. B., and Routtenberg, A., 1985, Characterization of protein Fl (47kDa, 4.5 pI): a kinase C substrate directly related to neural plasticity, Exp. Neurol 89: 213.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, L., Bregestovski, P.,Ascher, P., Herbet, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurones, Nature 307: 462.

    Article  PubMed  CAS  Google Scholar 

  • Ouimet, C. C., McGuinness, T. L. and Greengard, P., Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain, Proc. Natl. Acad. Sci. USA 81: 5604.

    Google Scholar 

  • Reymann, K. G., Frey, U., Jork, R. and Matthies, H., 1988, Polymixin B, an inhibitor of protien kinase C, prevents the maintenance of synaptic long—term potentiation in hippocampal CAl neurons, Brain Res. 440: 305.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, T. and Schwartz, J. H., 1985, Phosphorylation-dependent subcellular translocation of a Cat+ /calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons, J. Cell Biol 100: 835.

    Article  PubMed  CAS  Google Scholar 

  • Sastry, B. R., Goh, J. W. and Auyeung, A., 1986, Associative induction of posttetanic and long-term potentiation in CAl neurons of rat hippocampus, Science 232: 988.

    Article  PubMed  CAS  Google Scholar 

  • Staubli, U., Larson, J., Thibault, O., Baudry, M., and Lynch, G., 1988, Chronic administration of a thiol-proteinase inhibitor blocks long-term potentiation of synaptic responses, Brain Res. 444: 153.

    Article  PubMed  CAS  Google Scholar 

  • Wigstrom, H. and Gustafsson, B., 1988, Presynaptic and postsynaptic interactions in the control of hippocampal long-term potentiation, in: “Long-term Potentiation: From Biophysics to Behavior”. Landfield and Deadwyler ed., Alan R. Liss, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kauer, J.A., Malenka, R.C., Perkel, D.J., Nicoll, R.A. (1990). Postsynaptic Mechanisms Involved in Long-Term Potentiation. In: Ben-Ari, Y. (eds) Excitatory Amino Acids and Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5769-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5769-8_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5771-1

  • Online ISBN: 978-1-4684-5769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics