Skip to main content

The Role of the NMDA Receptor in the Development of the Frog Visual System

  • Chapter
Excitatory Amino Acids and Neuronal Plasticity

Abstract

Recent work has demonstrated an involvement of the NMDA receptor, a type of glutamate-sensitive receptor, in organizing the developing visual systems of frogs, fish and kittens (Cline et al, 1987; Kleinschmidt et al, 1987; Fox and Fraser, 1987; Tsumoto et al, 1987; Scherer and Udin, 1988; Schmidt, 1988; Cline and Constantine-Paton, 1989; Fox et al, 1989). It is thought that the NMDA receptor activation may be an initial cellular event in the experience-dependent phases of visual development, which include the formation of both topographic maps and ocular dominance columns. In this chapter, we will review our electrophysiological and anatomical data which demonstrate that NMDA receptor activation is crucial for the development of the retinotectal projection of the frog Rana pipiens and we will end with a discussion of the influence of the NMDA receptor in neuronal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnett, D.W. 1978. Statistical dependence between neighboring retinal ganglion cells in goldfish. Exp. Brain Res.. 32: 49–53.

    Google Scholar 

  • Ascher, P. Novak, L. 1987 Electrophysiological studies of NMDA receptor. TINS 10: 284–288.

    CAS  Google Scholar 

  • Cline, H.T., Debski, E., Constantine-Paton, M. 1987. NMDA receptor antagonist desegregates eye-specific stripes. Proc. Natl. Acad. Sci. 84: 4342–4345.

    Article  PubMed  CAS  Google Scholar 

  • Cline, H.T., Constantine-Paton, M. 1989. NMDA receptor antagonists disrupt the retinotectal topographic map. Neuron (in press).

    Google Scholar 

  • Collingridge, G.L., Kehl, S.J., & McLennan, H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway in the rat hippocampus. J. Physiol. ( Lond ) 334: 33–43.

    CAS  Google Scholar 

  • Constantine-Paton, M., Cline, H.T. and Debski, E., 1990 Patterned activity, synaptic convergence and the NMDA receptor in developing visual pathways. Ann. Rev. Neuroscience 13: in press.

    Google Scholar 

  • Constantine-Paton, M. and Ferrari-Eastman, P. 1987. Pre-and Postsynaptic correlates of interocular competition and segregation in the frog. J. Comp. Neurol. 255, 178–195.

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton, M and Norden, J.J. (1986) Development of order in the visual system. Cell and Developmental Biology of the Eye. S.R. Hilfer and J.B. Sheffield (eds). Springer-Verlag, New York.

    Google Scholar 

  • Debski, E.A., Cline, H.T., Constantine-Paton, M. 1987. Kynurenic acid blocks retinal-tectal transmission in Rana pipiens. Proc. Soc. Neurosci. 13: 1691.

    Google Scholar 

  • Debski, E.A., Constantine-Paton, M. 1988. The effects of glutamate receptor agonists and antagonists on the evoked potential in Rana pipiens. Proc. Soc. Neurosci.. 14: 674.

    Google Scholar 

  • Debski, E.A., Cline, H.T., Constantine-Paton, M. 1989. Chronic application of NMDA or APV affects the NMDA sensitivity of the evoked tectal response in Rana pipiens. Proc. Soc. Neurosci. 15(in press).

    Google Scholar 

  • Debski, E.A., Cline, H.T., Constantine-Paton, M. 1990. Activity-dependent tuning and the NMDA receptor. J. NeurobioL 21(1)(in press).

    Google Scholar 

  • Fox, B.E.S., Fraser,S.E. 1987. Excitatory amino acids in the retino-tectal system of Xenopus laevis.. Proc. Soc. Neurosci. 13: 766.

    Google Scholar 

  • Fox, K., Sato, H. and Daw, N. (1989) The location and function of NMDA receptors in cat and kitten visual cortex. J. Neurosci. 9: 2443–2454.

    PubMed  CAS  Google Scholar 

  • Fraser, S.E. 1985 Cell interactions involved in neuronal patterning: An experimental and theoretical approach in: Molecular Bases of Neural Development, G.M. Edelman

    Google Scholar 

  • W.E. Gall and W.M. Cowan, eds, John Wiley Sons, New York, pp. 481–508.

    Google Scholar 

  • Hannun, Y.A. and Bell, R.M. (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular recognition. Science 243: 500–507.

    Article  PubMed  CAS  Google Scholar 

  • Hidaka, H., Inagaki, M, Kawamoto, S., Sasaki, Y. (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependet protein kinase and protein kinase C. Biochem, 23: 5036–5040.

    Article  CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N. 1965. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28: 1041–1059.

    PubMed  CAS  Google Scholar 

  • Huettner, J. and Bean, B. 1988 Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK801: Selective binding to open channels. Proc. Natl. Acad. Sci. USA 85: 1307–1311.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J.A., Malenka, R.C. and Nicoll, R.A. (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334: 250–252.

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt, A., Bear, M.F., Singer, W. 1987. Blockade of NMDA receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238: 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Law, M. I. and Constantine-Paton, M. (1981) Anatomy and physiology of experimentally produced striped tecta. J. Neurosci. 1: 741–759.

    PubMed  CAS  Google Scholar 

  • Malinow, R., Madison, V.D. and Tsien, R.W. (1988) Persistent protein kinase activity underlying long-term potentiation. Nature 335: 820–824.

    Article  PubMed  CAS  Google Scholar 

  • Mathies, H.J.G., Palfrey, H.C., Hirning, L.D. and Miller, R.J. (1987) Down regulation of protein kinase C in neuronal cells: Effects on neurotransmitter release.J. Neurosci. 7: 1198–1206.

    Google Scholar 

  • Mastronarde, D.N. 1983 Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol. 49: 303–324.

    PubMed  CAS  Google Scholar 

  • Mayer, M.L. and Westbrook, G.L. 1987 The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28: 197–276.

    Google Scholar 

  • McDonald, J.W., Cline, H.T., Constantine-Paton, M., Maragos, W.E., Johnston, M.V., Young A.B. 1989. Quantitative autoradiographic localization of NMDA, quisqualate and PCP receptors in the frog tectum. Brain Res. 482: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Reh, T., Constantine-Paton, M. 1984. Retinal ganglion cells change their projection sites during larval development of Rana pipiens. J. Neurosci. 4: 442–457.

    CAS  Google Scholar 

  • Reh, T.A., Constantine-Paton, M. 1985. Eye-specific segregation requires neural activity in three-eyed Rana pipiens. J. Neurosci. 5: 1132–1143.

    PubMed  CAS  Google Scholar 

  • Scherer, W.S. and Udin, S.B. (1988) The role of NMDA receptors in the development of binocular maps in Xenopus tectum. Proc. Soc. Neurosci. 14: 272. 16.

    Google Scholar 

  • Schmidt, J.T. 1985 Formation of retinotopic connections: selective stabilization by an activity-dependent mechanism. Cell. and Molec. Neurobiol. 5: 65–84.

    Article  CAS  Google Scholar 

  • Schmidt, J.T. (1988) NMDA blockers prevent both retinotopic sharpening and LTP in regenerating optic pathway of goldfish. Proc. Soc. Neurosci. 14: 272. 15.

    Google Scholar 

  • Tsumoto, T., Hagihara, K., Sato, H., Hata, Y. 1987. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Nature 327: 513–514.

    Article  PubMed  CAS  Google Scholar 

  • Udin, S.B. and Fawcett, J.W. 1988. Formation of topographic maps. Ann. Rev. Neurosci. 11:289–327

    Google Scholar 

  • Yen, L-H, Constantine-Paton, M. 1988. EM analysis of single retinal ganglion cell terminals in developing Rana pipiens. Proc. Soc. Neurosci. 14:674.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cline, H.T., Debski, E.A., Constantine-Paton, M. (1990). The Role of the NMDA Receptor in the Development of the Frog Visual System. In: Ben-Ari, Y. (eds) Excitatory Amino Acids and Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5769-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5769-8_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5771-1

  • Online ISBN: 978-1-4684-5769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics