Skip to main content

Neural Networks and Synaptic Transmission in Immature Hippocampus

  • Chapter
Excitatory Amino Acids and Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 268))

Abstract

During the last decade numerous reports have described a previously unappreciated but nonetheless common process of central nervous system development: the transient overproduction of axonal projections early in postnatal life. Several groups have shown that during maturation terminal axonal branches are pruned and long axonal collaterals degenerate (for review see Cowan et al., 1984; Easter et al., 1985; Stanfield, 1984). With axon elimination, associated synapses would also be lost. Consistent with this are results of ultrastructural studies that have shown that the density of synapses in cortex early in postnatal life is higher than in the adult (Huttenlocher et al., 1982; Huttenlocher, 1984; Rakic et al., 1986). Elimination of functional synapses has been shown to occur at both the neuromuscular junction and in autonomic ganglion during maturation (Purves and Lichturan, 1980). One example of functional synapse regression in the central nervous system is the transient multiple innervation of Purkinje cells by climbing fibers (Crepel, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Ari, Y., Krnjevic, K, and Reinhardt, W., 1979, Hippocampal seizures and failure of inhibition, Can. J. Physiol. Pharmacol, 57: 1462–1466.

    Article  CAS  Google Scholar 

  • Ben-Ari, Y., Cherubini, E., and Krnjevic, K., 1988, Changes in voltage dependence of NMDA currents during development, Neurosci. Letts, 94: 88–92.

    Article  CAS  Google Scholar 

  • Brady, R.J. and Swann, J.W., 1984, Postsynaptic actions of baclofen associated with its antagonism of bicuculline-induced epileptogenesis in hippocampus, Cell. Mol. Neurobiol, 4: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Brady, R.J. and Swann, J.W., 1986, Ketamine selectively suppresses synchronized afterdischarges in immature hippocampus, Neurosci. Letts, 69: 143–149.

    Article  CAS  Google Scholar 

  • Brady, R.J. and Swann, J.W., 1988, Suppression of ictal-like activity by kynurenic acid does not correlate with its efficacy as an NMDA receptor antagonist, Epilepsy Res, 2: 232–238.

    Article  PubMed  CAS  Google Scholar 

  • Brady, R.J. and Swann, J.W., 1988, The effects of extracellular calcium on the epileptiform activity and NMDA responses are different in mature and immature hippocampal slices, Neurosci. Abstr, 14: 239.

    Google Scholar 

  • Cline, H.T., Debski, E.A., and Constantine-Paton, M., 1987, N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes, Proc. Natl. Acad. Sci. USA, 84: 4342–4345.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W.M., Fawcett, J.W., O’Leary, D.D.M., and Stanfield, B.B., 1984, Regressive events in neurogenesis, Science, 225: 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Crepel, F., 1982, Regression of functional synapses in the immature mammalian cerebellum, TINS, 5: 266–269.

    Google Scholar 

  • Cotman, C.W., Bridges, R.J., Taube, J.S., Clark, A.S., Geddes, J.W., and Monaghan, D.T., 1989, The role of the NMDA receptor in central nervous system plasticity and pathology, J. NIH Res, 1: 65–74.

    Google Scholar 

  • Easter, S.S.Jr., Purves, D., Rakic, P., and Spitzer, N.C., 1985, The changing view of neural specificity, Science, 230: 507–511.

    Article  PubMed  Google Scholar 

  • Ganong, A.H., Lanthorn, T.H. and Cotman, C.W., 1983, Kynurenic add inhibits synaptic and acidic amino add-induced responses in the rat hippocampus and spinal cord, Brain Res, 272: 170–174.

    Article  Google Scholar 

  • Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E.D., Betz, H., 1987, The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors, Nature, 328: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Haberly, L.B. and Bower, J.M., 1989, Olfactory cortex: model circuit for study of associative memory?, TINS, 12: 258–264.

    PubMed  CAS  Google Scholar 

  • Huttenlocher, P.R., de Courten, C., Garey, L.J., and van der Loos, H., 1982, Synaptogenesis in human visual cortex–evidence for synapse elimmination during normal development, Neurosci. Letts, 33: 247–252.

    Article  CAS  Google Scholar 

  • Huttenlocher, P.R., 1984, Synapse elimination and plasticity in developing human cerebral cortex, Amer. J. Mental Defic, 5: 488–496.

    Google Scholar 

  • Kleinschmidt, A., Bear, M.F., and Singer, W., 1987, Blockade of NMDA receptors disrupts experience-dependent plasticity of kitten striate cortex, Science, 238: 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G., “Synapses, Circuits, and the Beginnings of Memory,” M.S. Gazzaniga, ed., The MIT Press, Cambridge (1986).

    Google Scholar 

  • McCarren, M., and Alger, B.E., 1985, Use-dependent depression of ipsps in rat hippocampal pyramidal cells in vitro, J. Neurophysiol, 53: 557–571.

    PubMed  CAS  Google Scholar 

  • Miles, R. and Wong, R.K.S., 1983, Single neurones can initiate synchronized population discharge in the hippocampus, Nature, 306: 371–373.

    Article  PubMed  CAS  Google Scholar 

  • Miles, R. and Wong, R.K.S., 1986, Excitatory synaptic interactions between CA3 neurons in the guinea-pig hippocampus, J. Physiol, 373: 397–418.

    PubMed  CAS  Google Scholar 

  • Miles, R. and Wong, R.K.S., 1987(a), Latent synaptic pathways revealed after tetanic stimulation in the hippocampus, Nature, 329: 724–726.

    Article  PubMed  CAS  Google Scholar 

  • Miles, R. and Wong, R.K.S., 1987(b), Inhibitory control of local excitatory circuits in the guinea-pig hippocampus, J. Physiol, 388: 611–629.

    PubMed  CAS  Google Scholar 

  • Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C., and Sakmann, B., 1986, Molecular distinction between fetal and adult forms of muscle acetylcholine receptor, Nature, 321: 406–411.

    Article  PubMed  CAS  Google Scholar 

  • Purpura, D.P., Prelevic, S., and Santini, M., 1968, Postsynaptic potential and spike variation in the feline hippocampus during postnatal ontogenesis, Exp. Neurol, 22: 408–422.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D. and Lichtman, J.W., 1980, Elimination of synapses in the developing nervous system, Science, 210: 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., Bourgeois, J.-P., Eckenhoff, M.F., Zecevic, N., Goldman-Rakic, P.S., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science, 232: 232–235.

    Article  PubMed  CAS  Google Scholar 

  • Schneiderman, J.H., 1986, Low concentrations of penicillin reveal rhythmic, synchronous synaptic potentials in hippocampal slice, Brain Res, 398: 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, P.R., Darlison, M.G., Fujita, N., Burt, D.R., Stephenson, F.A., Rodriguez, H., Rhee, L.M., Ramachandran, J., Reale, A.V., Glencourse, T.A., Seeburg, P.H., and Barnard, E.A., 1987, Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family, Nature, 328: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P.A., 1982, Development of rabbit hippocampus: physiology, Dev. Brain Res, 2: 469–486.

    Article  Google Scholar 

  • Schwartzkroin, P.A. and Haglund, M.M., 1986, Spontaneous rhythmic synchronous activity in epileptic human and normal monkey temporal lobe, Epilepsia, 27: 523–533.

    Article  PubMed  CAS  Google Scholar 

  • Stanfield, B.B., 1984, Postnatal reorganization of cortical projections: the role of collateral elimination, TINS, 7: 37–41.

    Google Scholar 

  • Smith, K.L., Turner, J. and Swann, J.W., 1988, Paired intracellular recordings reveal mono-and polysynatpic excitatory interactions in immature hippocampus, Neurosci. Abstr, 14: 883.

    Google Scholar 

  • Swann, J.W. and Brady R.J., 1984, Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells, Des,. Brain Res, 12: 243–254.

    Article  Google Scholar 

  • Swann, J.W., Brady, R.J., and Martin, D.L., 1989, Postnatal development of GAGA-mediated synaptic inhibition in rat hippocampus, Neuroscience, 28: 551–561.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R.D., Miles, R., and Wong, R.K.S., 1989, Model of the origin of rhythmic population oscillations in the hippocampal slice, Science, 243: 1319–1325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swann, J.W., Smith, K.L., Brady, R.J. (1990). Neural Networks and Synaptic Transmission in Immature Hippocampus. In: Ben-Ari, Y. (eds) Excitatory Amino Acids and Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5769-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5769-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5771-1

  • Online ISBN: 978-1-4684-5769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics