Skip to main content

Biochemical and Ultrastructural Changes in the Hyperthermic Treatment of Tumor Cells: An Outline

  • Chapter
Consensus on Hyperthermia for the 1990s

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 267))

Abstract

Among the therapeutic strategies that have recently been proposed and are currently in use in the cancer treatment, hyperthermia is one of the most commonly employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bush, Uber den Einfluss welchen Heftigere Erysipeln Zuweilen auf Organisierte Neubildungen Ausuben, Verhandl Naturh. Preuss. Rhein. Westphal. 23: 28 (1866).

    Google Scholar 

  2. P. Burns, Die Heilwirkung des Erysipels auf Geschwulste, Beitr. Klin. Chir. 3: 443 (1887).

    Google Scholar 

  3. W. B. Coley, The treatment of malignant tumors by repeated inoculations of erysipelas-With a report of ten original cases, Am. J. Med. Sci. 105: 487 (1893).

    Article  Google Scholar 

  4. F. Westermark, Uber die Behandlung des Ulcerirended Cervixcarcinoms, Mittel Konstanter Warme, Zbl. Gynak. 1335 (1898).

    Google Scholar 

  5. J. F. Percy, Heat in the treatment of carcinomas of the uterus, Surg. Gynec. Obstet. 22: 77 (1916).

    Google Scholar 

  6. R. Kirsch and D. Schmidt, Erste Experimentelle und Klinische Erfahrungen mit der Ganzkorper-ExtremHyperthermie, in: Aktuelle Probleme aus dem Gebiet der Cancerologie, W. Doerr, F. Linder, and G.Wagner, eds. Heidelberg,Springer-Verlag pp. 53 (1966).

    Google Scholar 

  7. R. Cavaliere, E. C. Ciocatto, B. C. Giovannella, C. Heidelberger, R. O. Johnson, M. Fagottini, B. Mondovi’, G. Moricca and A. Rossi-Fanelli,Selective heat sensitivity of cancer cells. Biochemical and clinical studies, Cancer 20: 1351 (1967).

    Article  PubMed  CAS  Google Scholar 

  8. B. C. Giovanella, Actions of hyperthermia on tumor cells cultured in vitro, in: Selective heat sensitivity of cancer cells, A. Rossi Fanelli, R. Cavaliere, B. Mondovi’, G. Moricca eds. Springer-Verlag, Berlin, Heidelberg, New York pp. 36 (1977).

    Google Scholar 

  9. S.B. Field, Biological aspects of hyperthermia, in Physics and thecnology of hyperthermia, S. B. Field and C. Franconi eds. NATO ASI Series E:Applied Sciences,127, pp.634(1987).

    Google Scholar 

  10. R. J. Palzer and C. Heidelberger, Influence of drugs and synchrony on the hyperthermic killing of HeLa cells, Cancer Res. 33: 422 (1973).

    PubMed  CAS  Google Scholar 

  11. B. Mondovi’, Temperature range and selective sensitivity to hyperthermia,in:Thermal characteristics of tumors: application in detection and treatment, R. K. Jain and P.M.Gullino, Ann. New York Acad. Sci. NewYork pp. 202 and 231 (1980).

    Google Scholar 

  12. K. J. Henle and L. A. Dethlefsen, Heat fractionation and thermotolerance: a rewiew, Cancer Res. 38: 1843 (1978).

    PubMed  CAS  Google Scholar 

  13. G. M. Hahn, Hyperthermia and cancer, Plenum Press, New York and London (1982).

    Book  Google Scholar 

  14. S. B. Field and R. L. Anderson, Thermotolerance: a review of observations and possible mechanisms, Natl. Cancer Inst. Monogr. 61: 193 (1982).

    CAS  Google Scholar 

  15. S. B. Field, Clinical implication of thermotolerance in: Hyperthermic Oncology 1984, Vol 2, J.Overgaard ed., London, pp. 235 (1985).

    Google Scholar 

  16. J. Jung, A generalised concept for cell killing by heat, Radiat. Res. 106: 56 (1986).

    CAS  Google Scholar 

  17. B. Mondovi’, A. Scioscia Santoro, R. Strom, R.Faiola and A. R.ssi Fanelli,Increased immunogenicity of Ehrlich ascites cells after heat treatment, Cancer 30: 885 (1972).

    Google Scholar 

  18. R. Cavaliere, B. Mondovi’, G. Moricca, G.Monticelli, P.G. Natali, F. S. Santori, F. Di Filippo, A. Varanese, L. Aloe and A. Rossi Fanelli, Regional perfution hyperthermia, in: Hyperthermia in cancer therapy, F.K. Storm ed. G.K. Hall Medical Publ. Boston, Massachusetts,pp. 369 (1983).

    Google Scholar 

  19. J. Otte, Hyperthermia in cancer therapy, Eur. J. Pediatr. 147: 560 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. J. W. Strohbehn, Hyperthermia and cancer therapy:a review of biochemical engineering contributions and challenges, IEEE Trans. Biomed. Eng. 31: 779 (1984).

    Google Scholar 

  21. B. Mondovi’, A. Finazzi Agro’, G. Rotilio, R. Strom,G.Moricca and A. R.ssi Fanelli, The biochemicalmechanism of selective heat sensitivity of cancer cells: I. Studies on cellular respiration, Europ.J. Cancer 5: 129 (1969).

    Google Scholar 

  22. S. Lewin and D. S. Pepper, Variation of the melting temperature of calf-thymus DNA with pH and type of buffer,Arch. Biochem. Biophys. 109: 192 (1965).

    Google Scholar 

  23. J. R. Lepock, Involvement of membranes in cellular responses to hyperthermia, Radiat. Res. 92: 433 (1982).

    Google Scholar 

  24. B. Mondovi’, A. Finazzi Agro’, G. Rotilio, R. Strom, G. Moricca and A. Rossi Fanelli, The biochemical mechanism of selective heat sensitivity of cancer cells: II. Studies on nucleuc acids and protein synthesis, Europ. J. Cancer 5: 137 (1969).

    Google Scholar 

  25. R. L. Warters and O. L. Stone, The effects of hyperthermia on DNA replication in HeLa cells, Radiat. Res. 93: 71 (1983).

    CAS  Google Scholar 

  26. W. C. Dewey, A. Westra, H. H. Miller, and H. Nagasawa, Heat induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine, Int. J. Radiat. Biol. 20: 505 (1971).

    Article  CAS  Google Scholar 

  27. G. K. Livingston and L. A. Dethlefsen, effects of hyperthermia and X irradiation on sister chromatid exchange(SCE) frequency in Chinese hamster ovary (CHO) cells, Radiat. Res. 77: 513 (1979).

    Google Scholar 

  28. A. Bozzi, G. Mariutti, B. Mondovi’ and R. Strom, Effect of temperature on DNA repair synthesis in V79 mammalian cells exposed to ultraviolet light, Bull. Mol. Biol. Med. 12: 59 (1987).

    CAS  Google Scholar 

  29. G. C. Li, R. G. Evans and G. M. Hahn, Modification and inhibition of repair of potentially lethal X-ray damage by hyperthermia, Radiat. Res. 67: 491 (1976).

    CAS  Google Scholar 

  30. G. P. Raaphorst, E. I. Azzam and M. Feeley, Potentially lethal radiation damage repair and its inhibition by hyperthermia in normal hamster cells, mouse cells, and transformed mouse cells, Radiat. Res. 113: 171 (1988).

    CAS  Google Scholar 

  31. D. K. Dube, G. Seal and L. A. Loeb, Differential heat sensitivity of mammalian DNA polymerases, Biochem. Biophys. Res. Commun. 76: 483 (1977).

    Article  CAS  Google Scholar 

  32. E. Dikomey, W. Becker and K. Wielckens, Reduction of DNA-polymerase B activity of CHO cells by single and combined heat treatment, Int. J. Radiat. Biol. 52: 775 (1987).

    Article  CAS  Google Scholar 

  33. H. H. Kampinga and A. W. T. Konings, Inhibition of repair of X-ray-induced DNA damage by heat: the role of hyperthermic inhibition of DNA polymerase A activity, Radiat. Res. 112: 86 (1987).

    CAS  Google Scholar 

  34. S. P. Tomasovic, G. N. Turner and W. C. Dewey, Effect of hyperthermia on nonhistone proteins isolated with DNA, Radiat. Res. 73: 535 (1978).

    CAS  Google Scholar 

  35. R. L. Warters, L. M; Brizgys, R. Sharma and J. L. Roti Roti, Heat shock (45 C) results in an increase of nuclear matrix protein mass in HeLa cells, Int. J. Radiat. Biol. 50: 253 (1986).

    CAS  Google Scholar 

  36. R. L. Warters, L. M. Brizgys and B. W. Lyons Alterations in nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair, Int. J. Radiat. Biol. 52: 299 (1987).

    Google Scholar 

  37. R. Hancock, Topological organization of interphase DNA: the nuclear matrix and other skeletal structures, Biol. Cell 46: 102 (1982).

    Google Scholar 

  38. M. R. Mattern and R. B. Painter, Dependence of mammalian DNA replication on DNA supercoiling. I. Effects of ethidium bromide on DNA synthesis in permeable Chinese hamster ovary cells, Biochim. Biophys. Acta 563: 293 (1979).

    CAS  Google Scholar 

  39. E. D. Hickey and L. A. Weber, Modulation of heat-shock polypeptide synthesis in HeLa cells during hyperthermia and recovery, Biochemistry 21: 1513 (1982).

    Article  PubMed  CAS  Google Scholar 

  40. M. J. Schlesinger, M. Ashburner and A. Tissieres eds., Heat shock-from bacteria to man, Cold Spring harbor Laboratory, Cold Spring Harbor, New York (1982).

    Google Scholar 

  41. R. H. Burdon, Heat shock and heat shock proteins, Biochem. J. 240: 313 (1986).

    PubMed  CAS  Google Scholar 

  42. K. W. Lanks, Modulators of the eukaryotic heat shock response, Exp. Cell Res. 165: 1 (1986).

    Article  PubMed  CAS  Google Scholar 

  43. S. N. Alahiotis, Heat shock proteins. A new view on the temperature compensation, Comp. Biochem. Physiol. 75B: 379 (1983).

    CAS  Google Scholar 

  44. T. Hatayama, K. Honda, and M.Yukioka, Hela cells synthetize a specific heat shock protein upon exposure to heat shock at 42 C but not at 45 C, Biochem. Biophys. Res. Commun. 3: 957 (1986).

    Google Scholar 

  45. W. W. Richter and O.G. Issinger, Differential heat shock responce of primary human cell cultures and established cell lines, Biochem. Biophys. Res. Commun., 141: 46 (1986).

    Article  CAS  Google Scholar 

  46. H. Tsukeda, H. Maekawa, S. Izumi and K. Nitta, Effect of heat shock on protein synthesis by normal and malignant human lung cells in tissue culture, Cancer Res. 41: 5188 (1981).

    PubMed  CAS  Google Scholar 

  47. S. P. Tomasovic, L.S. Ramagli, R. A. Simonette, M. J. Wilson, and L.V. Rodriguez, Heat-stress protein of rat lung endothelial and mammary adenocarcinoma cells, Radiat. Res. 110: 45 (1987).

    Google Scholar 

  48. M. F. Barbe, M.Tytell, D. J. Gower, and W.J. Welch, Hyperthermia protects against light damage in rat retina, Science 241: 1817 (1988).

    Article  PubMed  CAS  Google Scholar 

  49. G. C. Li and Z. Werb, Correlation between synthesis of heat shock proteins and the development of thermotholerance in Chinese hamster fibroblast, Proc. Natl. Acad. Sci. Usa 79: 3219 (1982).

    Google Scholar 

  50. A. Laszlo and G. C. Li, Heat-resistant variants of Chinese hamster fibroblasts altered in expression of heat shock proteins, Proc. Natl. Acad. Sci. Usa 82: 8029 (1985).

    Article  PubMed  CAS  Google Scholar 

  51. K. T. Riabowl, L. A. Mizzen and W.J. Welch, Heat shock is lethal to fibroblasts microinjected with antibodies against hsp 70, Science 242: 433 (1988).

    Article  Google Scholar 

  52. R. N. Johnston, and B. L. Kucey, Competitive inhibition of hsp 70 gene expression causes thermosensitivity, Science 242: 1551 (1988).

    Article  PubMed  CAS  Google Scholar 

  53. W. Welch and J. R. Feramisco, Purification of the major mammalian heat shock proteins, J. Biol. Chem. 257: 14949 (1982).

    PubMed  CAS  Google Scholar 

  54. M. J. Schlesinger, Heat shock proteins: the seach for functions, J. Cell Biol. 103: 321 (1986).

    Article  PubMed  CAS  Google Scholar 

  55. A. Courtneidge and J.M. Bishop, Transit of pp60 to the plasma membrane, Proc. Natl. Acad. Sci. Usa, 79: 7117 (1982).

    Article  PubMed  CAS  Google Scholar 

  56. R. J. Deshaies, B. D. Knoch and R. Schekman, The role of stress proteins in membrane biogenesis, TIBS 13: 384 (1988).

    PubMed  CAS  Google Scholar 

  57. M. Morange, A. Diu, O. Bensaude and C. Babinet, Altered expression of heat shock proteins in embrional carcinoma and mouse early embrionic cells, Mol. Cell. Biol. 4: 730 (1984).

    CAS  Google Scholar 

  58. W. Leyko and G. Bartosz, Membrane effects of ionozing radiation and hyperthermia, Int. J. Radiat. Biol. 49: 743 (1986).

    Article  CAS  Google Scholar 

  59. P. S. Lin, P.S. Lui and S. Tsai, Heat induced ultrastructural injuries in limphoid cells, Exp. Mol. Pathol. 29: 281 (1978).

    Article  PubMed  CAS  Google Scholar 

  60. H. Bass, J. L. Moore and W. T. Coarkley, Lethality in mammalian cells due to hyperthermia under oxic and hypoxic conditions, Int. J. Radiat. Biol. 49: 743 (1978).

    Google Scholar 

  61. G. Arancia, P. Crateri Trovalusci, G. Mariutti and B. Mondovi’, Ultrastructural changes induced by hyperthermia in Chinese hamster V 79 fibroblasts, Int. J. Hyperthermia 5: 341 (1985).

    Article  Google Scholar 

  62. C. Sato, J. Nakayama, K. Kojma, Y. Nishimoto, W. and Nakamura, Effect of hyperthermia on cell surface charge and cell survival in mastocytoma cells, Cancer Res. 41: 4107 (1981).

    PubMed  CAS  Google Scholar 

  63. M. Kapiszewska, K. Hyrc and K. Cieszka, Effect of hyperthermia on cell surface charge and cell survival in two cell lines L5178Y, Hyperthermic Oncology 1984, Vol I, Summary paper, edited by Overgaard (London, Philadelphia: Taylor and Francis) pp. 41–44 (1984).

    Google Scholar 

  64. R. L. Anderson, S. Leeman, R. Parker, M.J. Hedges, P. W. Vaughan, and S. B. Field, Attachment of fibroblasts following hyperthermia and ultrasound, Int. Radiat. Biol. 46: 399 (1984).

    Article  CAS  Google Scholar 

  65. R. B. Mikkelsen and B. Koch, Thermosensitivity of the membrane potential of normal and simiam virus 40-transformed hamster lymphocites, Cancer RES. 41: 209 (1981).

    PubMed  CAS  Google Scholar 

  66. R. Strom, A. Scioscia Santoro, C. Crifo’, A. Bozzi, B. Mondovi’ and A. Rossi Fanelli, The biochemical mechanism of selective heat sensitivity of cancer cells. IV. Inhibition of RNA synthesis, Europ. J. cancer 9: 103 (1973).

    CAS  Google Scholar 

  67. R. Strom, P. Caiafa, B. Mondovi’ and A. Rossi-Fanelli, Effect of temperature on potassium-dependent stimulation of trans cellular migration in normal and neoplastic cells, FEBS Lett. 3: 343 (1969).

    Google Scholar 

  68. S. Szmigielski and M. Janiak, Membrane injury in cells exposed in vitro at 43 C hyperthermia, Cancer Therapy by Hyperthermia and Radiation, edited by C. Streffer, D. von Beuningen, F. Dietzel, E. Rottinger, J. E. Robinson, Scherer, S. Seeber, and K. R. Trott (Baltimore Munich: Urban and Schwarzenberg) pp. 169–171 (1978).

    Google Scholar 

  69. E. N. Alexandrova, G. S. Kalendo and N. G. Serebryakov, Effect of hyperthermia on early radiation reactions of HeLa cells at the stationary stage of growth, Radiobiologiya 24: 468 (1984).

    Google Scholar 

  70. P. N. Yi, Cellular ion content changes during and after hyperthermia, Bioch. Biophys. Res. Commun. 91: 177 (1979).

    Article  CAS  Google Scholar 

  71. M. J. Borrelli, W. G. Carlini, B. R. Ransom and W. C. Dewey, Ion-sensitive microelectrode measurements of free intracellular chloride and potassium concentrations in hyperthermia-treated neuroblastoma cells, J. Cell. Physiol. 129: 175 (1986).

    Google Scholar 

  72. S. H. Calderwood and G. M. Hahn, Thermal sensitivity of insulin-receptor binding, Biochim. Biophys. Acta, 756: 1 (1983).

    Article  CAS  Google Scholar 

  73. B. E. Magun and C. W. Fennie, Effect of hyperthermia on binding, internalization, and degradation of epidermal growth factor, Rad. Res. 86: 133 (1981).

    CAS  Google Scholar 

  74. K. H. Cheng, S. W. Hui and J. R. Lepock, Protection of membrane ATPase from thermak inactivation by cholesterol, Cancer Res. 47: 1255 (1987).

    PubMed  CAS  Google Scholar 

  75. A. Malhotra, L. P. M. Heynen and J. R. Lepock, Role of extracellular calcium in the hyperthermic killing of CHL V79, Radiat. Res. 112: 478 (1987).

    CAS  Google Scholar 

  76. J. Landry, P. Crete, S. Lamarche and P. Chretien, Activation of Ca-dependent processes during heat shock: role in cell thermoresistence, Radiat. Res. 113: 426 (1988).

    CAS  Google Scholar 

  77. J. R. Lepock, K. H. Cheng, H. Al-Qysi and J. Kruuv, Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationiship to hyperthermic cell killing, Can. J. Biochem. Cell Biol. 61: 421 (1983).

    Article  PubMed  CAS  Google Scholar 

  78. G. Arancia, W. Malorni, G. Mariutti and P. Trovalusci, Effect of hyperthermia on the plasma membrane structure of Chinese hamster V79 fibroblasts: a quantitative freeze-fracture study, Radiat. Res. 106: 47 (1986).

    CAS  Google Scholar 

  79. M. H. Ringdahl, B. Anderstam and C. Vaca, Heat-induced changes in the incorporation of H acetate in membrane lipids, Int. J. Radiat. Biol. 52: 315 (1987).

    Article  Google Scholar 

  80. C. R. Hackenbrock, M. Hochli and R. M. Chau, Calorimetric and freeze fracture analisis of lipid phase transitions and lateral traslational motion of intramembrane particles in mithocondriaa membranes, Biochim. Biophys. Acta 455: 466 (1976).

    Article  CAS  Google Scholar 

  81. A. E. Cress, P. S. Culver, T. E. Moon and E. W. Gerner, Correlation between amounts of cellular membrane components and sensitivity to hyperthermia in a variety of mammalian cell lines in culture, Cancer Res. 4: 1716 (1982).

    Google Scholar 

  82. M. M. Guffy, J. A. Roserberg, I. Simon and C. P. Burns, Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells, Cancer Res. 42: 3625 (1982).

    PubMed  CAS  Google Scholar 

  83. M. B. Yatvin, N. M. Abuirmeileh, J. W. Vorpahl and C. E. Elson, Biological optimization of hyperthermia: modification of tumor membrane lipids, Eur. J. Cancer Clin. Oncol. 19: 657 (1985).

    Google Scholar 

  84. L. Marcocci, N. Laudonio, G. Zupi, E. Poggi, C. Greco, A. Bozzi, I. Mavelli, G. Rotilio and B.Mondovi’, Liposomes and heat sensitivity of tumor cells, J. Exp. Clin. Res. 7: 1 (1988).

    Google Scholar 

  85. J. DiGiuseppi and I. Fridovich, The toxicology of molecular oxygen, CRC Critical. Rev. Toxicol. 12:315 (1984)

    Article  Google Scholar 

  86. T. Ramasarma, Generation of H O in biomembranes,Biochem. Biophys. Acta 694: 69 (1982).

    CAS  Google Scholar 

  87. W.J. Welch and J. P. Suhan, Morphological study of the mammalian stress response: characterizationof changes in cythoplasmic organelles, cytoskeleton,and nucleoli, and the apparence of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol. 101:1198(1985).

    Article  PubMed  CAS  Google Scholar 

  88. M. Younes and C. P. Siegers, Interrelation between lipid peroxidation and hepatotoxic events,Biochem. Pharmacol. 33: 2001 (1984).

    CAS  Google Scholar 

  89. P. Buffa, V. Guarriera-Bobyleva, V. Muscatello,I.Pasquali Ronchetti, Conformational changes in the mithocondria associated with uncoupling of oxidative phosphrylation in vivo and in vitro,Nature 226: 272 (1970).

    CAS  Google Scholar 

  90. R. E. Durand, Potentiation of radiation lethality by hyperthermia in a tumor model: effect of sequence, degree and duration of heating, Int. J. Radiat. Oncol. Biol. Phys. 4: 401 (1978).

    Google Scholar 

  91. A. Floridi, A. Nista, M. G. Paggi, L. Pellegrini, A.Bagnato,M.Fanciulli and A. Caputo, Effect of hyperthermia on electron transport in Ehrlich ascites tumor mithicondria,Exp. Mol. Pathol. 46: 279(1987).

    CAS  Google Scholar 

  92. E. N. Christiansen and E. Kvamme, Effect of thermal treatment on mithocondria of brain, liver, ascites cells, Acta Physiol. Scand 76: 472(1969)

    Article  PubMed  CAS  Google Scholar 

  93. M. A. Hass and D. Massaro, Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses, J. Biol. Chem. 263: 776 (1988).

    PubMed  CAS  Google Scholar 

  94. J. M. McCord, Oxygen derived free radicals in postischemic tissue injury, New Engl. J. Med.312:159 (1985).

    CAS  Google Scholar 

  95. M. A. Steven and S. K. Calderwood G. M. Hanh, Rapid increases in inositol triphosphate and intracellular Ca after heat shock, Biochem. Biophys. Res. Commun. 137: 826 (1986).

    Article  Google Scholar 

  96. E. Ben-Hur and E. Riklis, Enhancement of thermal killing by polyamines, Rad. Res. 78: 321 (1979).

    CAS  Google Scholar 

  97. B. Mondovi and P. Riccio, Biological basis of thermosensitivity of tumor cells, Proceeding of II international conference on Applications of Physics to Medicine and Biology Z. Bajzer, P.Baxa, C. Francioni, pp. 297 (1984).

    Google Scholar 

  98. B. Mondovi’, P. Guerrieri, M. T. Costa and S.Sabatini,Amine oxidases inhibitors and biogenic amines metabolism, Adv. Polyamine Res. 3: 75(1981)

    Google Scholar 

  99. B. Mondovi, P. Gerosa and R. Cavaliere, Studies on the effect of polyamines and their products onEhrlich ascites tumors, Agents and Actions, 12:450(1982)

    Article  PubMed  CAS  Google Scholar 

  100. R. S. Kramer and R. D. Pearlstein, Reversible uncoupling of oxidative phosphorilation at low oxygen tension, Proc. Natl. Acad. Sci. USA 80: 5807 (1983).

    Article  PubMed  CAS  Google Scholar 

  101. D. P. Jones, Hypoxia and drug metabolism, Biochem. Pharm. 30: 1019 (1981).

    CAS  Google Scholar 

  102. I. Mavelli and G. Rotilio, Enzymatic protection against intracellular oxidative processes, in: Advances on oxygen radicals and radioprotection. A. Breccia, C. L. Greenstock, M. Tamba. Lo Scarabeo, pp. 65 (1983).

    Google Scholar 

  103. L. W. Oberley and G. R. Buettner, Role of superoxide dismutase in cancer, Cancer Res. 39: 1141 (1979).

    PubMed  CAS  Google Scholar 

  104. A. Bozzi, I. Mavelli, A. Finazzi Agro’, R. Strom, A.M. Wolf, B. Mondovi’ and G. Rotilio, Enzyme defense against oxygen derivatives. II.Erythrocytes and tumor cells, Molec. Cell. Biochem. 10: 11 (1976).

    Google Scholar 

  105. I. Mavelli, G. Rotilio, M. R. Ciriolo, G. Melino and O. Sapora, Antioxygenic enzymes as tumor markers: a critical reassesment of the respective roles of superoxide dismutase and gluthatione peroxidase, in: Human marker, Cimino, Birkmayer, Klavins, Timental, Salvatore. pp. 883 (1987).

    Google Scholar 

  106. A. Bozzi, I. Mavelli, B. Mondovi’, R. Strom and G. Rotilio, Differential sensitivity of tumor cells to externally generated hydrogen peroxide. Role of glutathione and related enzymes, Cancer Biochem. Biophys. 3: 135 (1979).

    CAS  Google Scholar 

  107. A. Bozzi, I. Mavelli, B. Mondovi’, R. Strom and G. Rotilio, Differential cytotoxicity of daunomycin in tumor cells is related to glutathione-dependent hydrogen peroxide metabolism, Biochem. J. 194: 369 (1981).

    Google Scholar 

  108. R. A. Omar, S. Yano and Y. Kikkawa, Antioxidant enzymes and survival of normal and Simiam Virus 40-transformed mouse embryo cells after hyperthermia, Cancer Res. 47: 3473–3476 (1987).

    PubMed  CAS  Google Scholar 

  109. P. L. Lin, L. Kwock and C.E. Butterflield, Diethyldithiocarbamate enhancement of radiation and hyperthermic effcts on Chinese hamster cells in vitro, Rad. Res. 77: 501 (1979).

    CAS  Google Scholar 

  110. J. B. Mitchell, A. Russo, T. J. Kinsella and E. Glatstein, Glutathione elevation during thermotolerance induction and thermosensitization by gluthatione depletion, Cancer Res. 43: 987 (1983).

    PubMed  CAS  Google Scholar 

  111. M. L. Freeman, A. W. Malcolm and M. J. Meredith, Decreased intracellular glutathione concentration and increased hyperthermic cytotoxicity in an acid enviromental, Cancer Res. 45: 504 (1985).

    PubMed  CAS  Google Scholar 

  112. B. Chance, H. Sies and S. Boveris, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59: 527 (1979).

    CAS  Google Scholar 

  113. J. D. Crapo and J. M. McCord, Oxygen-induced changes in pulmonary superoxide dismutase assayed by antibody titration, Am. J. Physiol. 231: 1196 (1976).

    PubMed  CAS  Google Scholar 

  114. S. E. Dryer, R. L. Dryer and A. P. Author, Enhancement of mitochondrial cyanide-resistent superoxide dismutase in the liver of rats treated with 2,4-dinitrophenol, J. Biol. Chem. 255: 1054 (1980).

    PubMed  CAS  Google Scholar 

  115. D. P. Loven, D. L. Leeper and L. W. Oberley, Superoxide dismutase levels in Chinese hamster ovary cells and ovarian carcinoma cells after hyperthermia or exposure to cycloheximide, Cancer Res. 45: 3029 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Marcocci, L., Mondovi, B. (1990). Biochemical and Ultrastructural Changes in the Hyperthermic Treatment of Tumor Cells: An Outline. In: Bicher, H.I., McLaren, J.R., Pigliucci, G.M. (eds) Consensus on Hyperthermia for the 1990s. Advances in Experimental Medicine and Biology, vol 267. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5766-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5766-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5768-1

  • Online ISBN: 978-1-4684-5766-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics