Skip to main content

Chaos and Turbulence

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 218))

Abstract

The lecture notes presented here are an attempt at giving a coherent introduction to some concepts which are not usually presented together. “Low dimensional chaos” is, despite its recent absorption into the physics community, becoming a reasonably mature subject. At least one now knows practical ways of quantifying “chaos”, one has an understanding of the underlying fractal geometry and for certain special cases one even has strong theoretical results. Turbulence, on the other hand, is an extremely ramified subject and, especially from the experimental side, rather well-studied, largely because of its many technical applications from refrigerators to airplanes. In these lectures the word “turbulence” will be used in a rather general sense, not limited to the motion of fluids. We shall use it to describe motion which is irregular both in space and time as distinguished from the word “chaos” which is usually used about the irregular temporal motion of a single (or a few) variables. This means that we can talk about turbulence in chemical reactions, dynamical interphases and many other nonhydrodynamical situations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Hénon, Comm.Math.Phys. 50,69(1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J.-P.Eckmann and D.Ruelle, Rev.Mod.Phys. 67, 617 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  3. D.A.Russel, J.D.Hanson and E.Ott, Phys.Rev.Lett. 45, 1175 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  4. B.B.Mandelbrot, “The Fractal Geometry of Nature” (Freeman 1982).

    Google Scholar 

  5. J.L.Kaplan and J.A.Yorke, Comm.Math.Phys. 67, 93 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. P.Cvitanović, Phys.Rev.Lett. 61, 2729 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  7. P.Collet and J.-P.Eckmann, “Iterated Maps on the Interval as Dynamical Systems” (Birkhauser 1980).

    Google Scholar 

  8. P.Cvitanović, ed. “Universality in Chaos” (Adam Hilger 1984).

    Google Scholar 

  9. M.J.Feigenbaum, J.StatPhys. 19, 25 (1978) and 21, 669 (1979),

    MathSciNet  ADS  MATH  Google Scholar 

  10. McKay, Meiss and Percival.

    Google Scholar 

  11. D.Ruelle and F.Takens, Comm.Math.Phys. 20, 167 and 21, 21 (1971).

    Google Scholar 

  12. T.Bohr, G.Grinstein, Yu He and C.Jayaprakash, Phys.Rev.Lett. 58, 2155 (1987).

    Article  ADS  Google Scholar 

  13. J.W.Elder, J.Fluid Mech. 9, 235 (1960).

    Article  ADS  MATH  Google Scholar 

  14. D.J.Tritton, “Physical Fluid Dynamics” (Van Nostrand Reinhold 1977).

    Google Scholar 

  15. A.N.Zaikin and A.M.Zhabotinsky, Nature 225, 535 (1970).

    Article  ADS  Google Scholar 

  16. M.van Dyke, “An Album of Fluid Mechanics” (The Parabolic Press 1982).

    Google Scholar 

  17. K.R.Sreenivasan and C.Meneveau, J.Fluid Mech. 173, 357 (1986). C.Meneveau and K.R.Sreenivasan in “CHAOS ’87” ed. M.Duong-van (Nucl.Phys. B 2, 49 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  18. G.Paladin and A.Vulpiani, Phys.Rep. 156, 147 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  19. J.P.Crutchfield and K.Kaneko, “Phenomenology of Spatio-Temporal Chaos” in “Directions in Chaos” vol.1, ed. Hao Bai-Lin (World Scientific 1987).

    Google Scholar 

  20. H.Chaté and P.Manneville, “Spatio-temporal Intermittency in Coupled Map Lattices”, Physica D 32, 409(1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. K.Kaneko, Physica D to appear.

    Google Scholar 

  22. K.Kaneko, Prog.Theor.Phys. 74, 1033 (1985).

    Article  ADS  MATH  Google Scholar 

  23. T.Bohr and D.Rand, Physica 25D, 387 (1987).

    MathSciNet  ADS  Google Scholar 

  24. K.Kaneko and J.P.Crutchfield, Phys.Rev.Lett. 60, 2715 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  25. T.Bohr and O.B.Christensen, Phys.Rev.Lett., to be published.

    Google Scholar 

  26. T.Yamada and H.Fujisaka, Prog.Theor.Phys. 72 (1984)

    Google Scholar 

  27. S.P.Kuznetsov and A.S.Pikovsky, Physica 19 D, 384 (1986). A.S.Pikovsky, Z. Phys. B 55,149 (1984).

    MathSciNet  MATH  Google Scholar 

  28. F.Kaspar and H.G.Schuster, Phys.Lett. A 113, 451 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  29. Note that small wavelength instabilities can occur if ε becomes too large. It is easy to check that \(\mid 1-{\varepsilon}+{\varepsilon\over 2}(\cos q_1+\cos q_2)\mid\leq 1\) for all q 1, q 2 as long as 0≤ε≤l. For ε> l the “staggered” state with q 1=q 2=π becomes unstable.

    Google Scholar 

  30. O.B.Christensen, “Spatial Correlations in Coupled Map Lattices”, Thesis, University of Copenhagen (1987). Unpublished.

    Google Scholar 

  31. R.Deissler and K.Kaneko, Phys.Lett. A 119 (1987).

    Google Scholar 

  32. T.Bohr and D.Rand, sumitted to Physica D.

    Google Scholar 

  33. G.Nicolis and I.Prigogine, “Self-organization in Non-equilibrium systems” (Wiley 1977).

    Google Scholar 

  34. H.Haken, “Synergetics” (Sprnger 1977).

    Google Scholar 

  35. J.-C.Roux, R.H.Simonyi and H.L.Swinney, Physica D 8, 257 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. A.T.Winfree, “The Geometry of Biological Time” (Springer 1980).

    Google Scholar 

  37. Y.Kuramoto, Chemical Oscillations, Waves and Turbulence Springer, Berlin (1980)

    Google Scholar 

  38. A.V.Gaponov-Grekhov and M.I.Rabinovich, Sov.Phys.Usp. 30, 433 (1987). A.V.Gaponov-Grekhov, A.S.Lomov, G.V.Osipov and M.I.Rabinovich, “Pattern formation and dynamics of two-dimensional structures in nonequilibrium dissipative media”. Gorky preprint (1988).

    Article  MathSciNet  ADS  Google Scholar 

  39. P.Coullet, L.Gil and J.Lega, Phys.Rev. Lett. 62, 1619 (1989).

    Article  ADS  Google Scholar 

  40. T.Bohr, M.H.Jensen, A.W. Pedersen and D.Rand, to appear in “New Trends in Nonlinear Dynamics and Pattern Forming Phenomena” ed. P.Coullet and P.Huerre (Plenum 1989).

    Google Scholar 

  41. T.Bohr, M.H.Jensen and A.W. Pedersen:“Transition to turbulence in a discrete complex Ginzburg-Landau model”, preprint (1989).

    Google Scholar 

  42. A.C.Newell and J.A.Whitehead, J.Fluid Mechanics 38, 279 (1969); A.C.Newell in Lectures in Applied Mathematics, vol. 15, Am. Math. Society, Providence (1974).

    Article  ADS  MATH  Google Scholar 

  43. See e.g. J.M.Kosterlitz in “Nonlinear Phenomena at Phase Transitions and Instabilities” ed. T.Riste (Plenum 1982) p.397, or D.R.Nelson in “Phase Transitions and Critical Phenomena” vol. 7 ed. C.Domb and J.L.Lebowitz (Academic Press 1983) p.l.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bohr, T. (1990). Chaos and Turbulence. In: Baeriswyl, D., Bishop, A.R., Carmelo, J. (eds) Applications of Statistical and Field Theory Methods to Condensed Matter. NATO ASI Series, vol 218. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5763-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5763-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5765-0

  • Online ISBN: 978-1-4684-5763-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics