Skip to main content

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

The common property of G-binding proteins is, by definition, the ability to bind guanine nucleotides. In this review we shall make our task easier by concentrating on the domain or subunits responsible for carrying out this function. This is not, however, intended to preempt the issue: a common function of such a general nature, exercised in so many different biological organisms and biochemical contexts, does not automatically imply a high, or even a detectable, degree of homology among the proteins that proffer it. Indeed, the G-proteins provide a spectrum of degrees of kinship that range from the intimate to the unrecognizable. Satisfyingly, this spectrum correlates largely with similarity of function, at least within the general classes of G-protein. Nevertheless, between these classes it remains a matter for conjecture whether the difference between just-detectable homology and no detectable homology, significant as it may be in the statistical sense, is significant in the subjective sense of “telling us anything about evolution.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbacid, M., 1987, ras gene, Ann. Rev. Biochem. 56:779–827.

    Article  PubMed  CAS  Google Scholar 

  • Bohr, H., Bohr, J., Brunak, S., Cotterill, R. M. J., Lautrup, B., Nörskov, L., Olesen, O., and Petersen, S. B., 1988, Protein secondary structure and homology by neural networks: the a-helices in rhodopsin, FEBS Len. 241: 223–228.

    Article  CAS  Google Scholar 

  • Brands, J. H. G. M., Maassen, J. A., Van Hemert, F. J., Amons, R., and Möller, W., 1986, The primary structure of the a subunit of human elongation factor 1. Structural aspects of guaninenucleotide-binding sites, Eur. J. Biochem. 155: 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Cenatiempo, Y., Deville, F., Dondon, J., Grunberg-Manago, M., Sacerdot, C., Hershey, J. W. B., Hansen, H. F., Petersen, H. U., Clark, B. F. C., Kjeldgaard, M., la Cour, T. F. M., Mortensen, K. K., and Nyborg, J., 1987, The protein synthesis initiation factor 2 G-domain. Study of a functionally active C-terminal 65-kilodalton fragment of IF2 from Escherichia cols, Biochemistry 26: 5070–5076.

    Article  PubMed  CAS  Google Scholar 

  • Chardin, P., and Tavitian, A., 1986, The ral gene: A new ras related gene isolated by the use of a synthetic probe, EMBO J. 5: 2203–2208.

    PubMed  CAS  Google Scholar 

  • Clark, B., 1980, The elongation step of protein biosynthesis, Trends Biochem. Sci. 5: 207–210.

    Article  CAS  Google Scholar 

  • Dever, T. E., Glynias, M. J., and Merrick, W. C., 1987, GTP-binding domain: Three consensus sequence elements with distinct spacing, Proc. Natl. Acid Sci. USA 84: 1814 - -1818.

    Article  CAS  Google Scholar 

  • Dever, T. E. and Merrick, W. C., 1989, The GTP-binding domain revisited, in: The Guanine-Nucleotide Binding Proteins. Common Structural and Functional Properties, (L. Bosch, B. Kraal, and A. Parmeggiani, eds.), EMBO/NATO/CEC Adv. Res. Workshop, Renesse, The Netherlands, Aug. 1988, Plenum Press, New York, pp. 35–48.

    Google Scholar 

  • de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., and Kim, S-H., 1988, Three-dimensional structure of an oncogene protein: Catalytic domain of human c-H-ras p21, Science 239: 888–891.

    Article  PubMed  Google Scholar 

  • de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M. and Kim, S-H., 1989, Three-dimensional structure of ras p21 proteins, in: The Guanine-Nucleotide Binding Proteins. Common Structural and Functional Properties, (L. Bosch, B. Kraal and A. Parmeggiani, eds.) EMBO/NATO/CEC Adv. Res. Workshop, Renesse, The Netherlands, Aug. 1988 Plenum Press, New York.

    Google Scholar 

  • Gamier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120: 97–120.

    Article  Google Scholar 

  • Gibbs, J. B., Sigal, I. S., and Scolnick, E. M., 1985, Biochemical properties of normal and oncogenic ras p21, Trends Biochem. Sci. 10: 350–353.

    Article  CAS  Google Scholar 

  • Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem. 56: 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Guy, B., Kieny, M. P., Riviere, Y., Le Peuch, C., Dott, K., Girard, M., Montagnier, L., and Lecocq, J-P., 1987, HIV F/3’ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product, Nature 330: 266–269.

    Article  PubMed  CAS  Google Scholar 

  • Halliday, K. R., 1984, Regional homology in GTP-binding proto-oncogene products and elongation factors, J. Cyclic Nucleotide Prot. Phosphoryl, Res. 9: 435–448.

    CAS  Google Scholar 

  • Haubruck, H., Disela, C., Wagner, P., and Gallwitz, D., 1987, The ras-related ypt protein is a ubiquitous eukaryotic protein: Isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene, EMBO J. 6: 4049–4053.

    PubMed  CAS  Google Scholar 

  • Hovemann, B., Richter, S., Walldorf, U., and Cziepluch, C., 1988, Two genes encode related cytoplasmic elongation factor la (EF-1a) in Drosophila melanogaster with continuous and stage specific expression, Nucl. Acids Res. 16: 3175–3194.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, Y-W., and Miller, D. L., 1987, A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP-regulatory protein, J. Biol. Chem. 262: 13081–13085.

    PubMed  CAS  Google Scholar 

  • Jacquet, E., and Parmeggiani, A., 1988, Structure—function relationships in the GTP binding domain of EF-Tu: Mutation of Va120, the residue homologous to position 12 in p21, EMBO J. 7: 2861–2867.

    PubMed  CAS  Google Scholar 

  • Jurnak, F., 1985, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science 230: 32–36.

    Article  PubMed  CAS  Google Scholar 

  • Jurnak, F. A., 1988, The three-dimensional structure of c-H-ras p21: Implications for oncogene and G protein studies, Trends Biochem. Sci. 13: 195–198.

    Article  PubMed  CAS  Google Scholar 

  • Kushiro, A., Shimizu, M., and Tomita, K-I., 1987, Molecular cloning and sequence determination of the tuf gene coding for the elongation factor Tu of Thermus thermophilus HB8. Eur. J. Biochem. 170: 93–98.

    Article  PubMed  CAS  Google Scholar 

  • la Cour, T. F. M., Nyborg, J., Thirup, S., and Clark, B. F. C., 1985, Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography, EMBO J. 4: 2385–2388.

    PubMed  Google Scholar 

  • Lebennan, R., and Egner, U., 1984, Homologies in the primary structure of GTP-binding proteins: The nucleotide-binding site of EF-Th and p21, EMBO J. 3: 339–341.

    Google Scholar 

  • Lechner, K., and Böck, A., 1987, Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor lb, Mol. Gen. Genet. 208: 523–528.

    Article  CAS  Google Scholar 

  • Lenstra, J. A., Vliet, A. V., Amberg, A. C., Van Hemert, F. J., and Möller, W., 1986, Genes coding for the elongation factor EF-la in Anemia, Eur. J. Biochem. 155: 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Linz, J. E., Lira, L. M., and Sypherd, P. S., 1986, The primary structure and the functional domains of an elongation factor 1-a from Mucor racemosus, J. Biol. Chem. 261: 15022–15029.

    PubMed  CAS  Google Scholar 

  • Mandelkow, E-M., Hermann, M., and Rühl, U., 1985, Zitbulin domains probed by limited proteolysis and subunit-specific antibodies, J. Mol. Biol. 185: 311–327.

    Article  PubMed  CAS  Google Scholar 

  • March, P. E., and Inouye, M., 1985, GTP-binding membrane protein of Escherichia coli with sequence homology to initiation factor 2 and elongation factors Tu and G, Proc. Natl. Acad. Sci. USA 82: 7500–7504.

    Article  PubMed  CAS  Google Scholar 

  • Masters, S. B., Stroud, R. M., and Boume, H. R., 1986, Family of G protein a chains: Amphipathic analysis and predicted structure of functional domains, Prot. Eng. 1: 47–54.

    Article  CAS  Google Scholar 

  • McCormick, F., Clark, B. F. C., la Cour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., and Nyborg, J., 1985, A model for the tertiary structure of p21, the product of the ras oncogene, Science 230: 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Montandon, P-E., and Stutz, E., 1983, Nucleotide sequence of a Euglena gracilis chloroplast genome region coding for the elongation factor Tu; evidence for a spliced mRNA, Nucl. Acids Res. 11: 5877–5892.

    Article  PubMed  CAS  Google Scholar 

  • Möller, W., and Amons, R., 1985, Phosphate-binding sequences in nucleotide-binding proteins, FEBS Lett. 186: 1–7.

    Article  PubMed  Google Scholar 

  • Nagata, S., Tsunetsugu-Yokota, Y., Naito, A., and Kaziro, Y., 1983, Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 80: 6192–6196.

    Article  PubMed  CAS  Google Scholar 

  • Nyborg, J., and la Cour, T. F. M., 1989, New structural data on elongation factor-Tu:GDP based on X-ray crystallography, in: The Guanine-Nucleotide Binding Proteins. Common Structural and Functional Properties, (L. Bosch, B. Kraal and A. Parmeggiani, eds.), EMBO/NATO/CEC Adv. Res. Workshop, Renesse, The Netherlands, Aug. 1988, Plenum Press, New York, pp. 314.

    Google Scholar 

  • Parmeggiani, A., Swart, G. W. M., Mortensen, K. K., Jensen, M., Clark, B. F. C., Dente, L., and Cortese, R., 1987, Properties of a genetically engineered G domain of elongation factor Tu, Proc. Natl. Acad. Sci. USA 84: 3141–3145.

    Article  PubMed  CAS  Google Scholar 

  • Rawis, R. L., 1987, G-proteins: Research unravels their role in cell communication, Chem. Eng. News Dec. 21: 26–39.

    Google Scholar 

  • Schirmaier, F., and Philippsen, P., 1984, Identification of two genes coding for the translation elongation factor EF-la of S. cerevisiae, EMBO J. 3: 3311–3315.

    PubMed  CAS  Google Scholar 

  • Seidler, L., Peter, M., Meissner, F. and Sprinzl, M., 1987, Sequence and identification of the nucleotide binding site for the elongation factor Tu from Thermus thermophilus HB8, Nucl. Acids Res. 15: 9263–9277.

    Article  PubMed  CAS  Google Scholar 

  • Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M. 1985, In yeast, ras proteins are controlling elements of adenylate cyclase, Cell 40: 27–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Clark, B.F.C., Jensen, M., Kjeldgaard, M., Thirup, S. (1990). Structural Homologies in G-Binding Proteins. In: Hook, J.B., Poste, G., Schatz, J. (eds) Protein Design and the Development of New Therapeutics and Vaccines. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5739-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5739-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5741-4

  • Online ISBN: 978-1-4684-5739-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics