Skip to main content

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

The enzyme dihydrofolate reductase (DHFR) has become a well-established target for drug action since it was identified about 30 years ago. Clinically useful drugs whose activity stems from DHFR inhibition include the antibacterial agent trimethoprim (TMP, 1) (see Finland et al., 1982), and methotrexate (MTX, 2) (see Roth and Cheng, 1982), a compound used in the treatment of certain forms of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonjuk, D. J., Birdsall, H. T., Cheung, A., Clore, G. M., Feeney, J., Gronenborn, A., Roberts, G. C. K., and Tran, T. Q., 1984, AHNMR study of the role of the glutamate moiety in the binding of methotrexate to Lactobacillus casei dihydrofolate, Br. J. Pharm. 81: 309–315.

    CAS  Google Scholar 

  • Appleman, J. R., Prendergast, N., Delcamp, T. J., Freisheim, J. H., and Blakley, R. L., 1988, Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase, J. Biol. Chem. 263: 10304–10313.

    PubMed  CAS  Google Scholar 

  • Baccanari, D. P., Stone, D., and Kuyper, L., 1981, Effect of a single amino acid substitution on Escherichia coli dihydrofolate reductase catalysis and ligand binding, J. Biol. Chem. 256: 1738–1747.

    PubMed  CAS  Google Scholar 

  • Baccanari, D. P., Daluge, S., and King, R. W., 1982, Inhibition of dihydrofolate reductase: Effect of reduced nicotinamide adenine dinucleotide phosphate on the selectivity and affinity of diaminobenzylpyrimidines, Biochemistry 21: 5068–5075.

    Article  PubMed  CAS  Google Scholar 

  • Bash, P. A., Singh, U. C., Brown, F. K., Langridge, R., and Kollman, P. A., 1987, Calculation of the relative change in binding free energy of a protein—inhibition complex, Science 235: 574–576.

    Article  PubMed  CAS  Google Scholar 

  • Beddell, C. R., 1984, Dihydrofolate reductase: Its structure, function, and binding properties, in: X-Ray Crystallography and Drug Action, ( A. S. Horn and C. J. DeRanter, eds.), pp. 169–193, Oxford University Press, New York.

    Google Scholar 

  • Bevan, A. W. Roberts, G. C. K., Feeney, J., and Kuyper, L. F., 1985, H and 15N NMR studies of protonation and hydrogen-bonding in the binding of trimethoprim of dihydrofolate reductase, Eur. Biophys. J. 11:211–218.

    Google Scholar 

  • Birdsall, B., Roberts, G. C. K., Feeney, J., Dann, J. G., and Burgen, A. S. V., 1983, Trimethoprim binding to bacterial and mammalian dihydrofolate reductase: A comparison by proton and carbon-13 nuclear magnetic resonance, Biochemistry 22: 5597–5604.

    Article  PubMed  CAS  Google Scholar 

  • Bitar, K. G., Blankenship, D. T., Walsh, K. A., Dunlap, R. B., Reddy, A. V., and Freisheim, J. H., 1977, Amino acid sequence of dihydrofolate reductase from an amethopterin-resistant strain of Lactobacillus casei, FEBS Lett. 80: 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Blakley, R. L., 1984, Dihydrofolate Reductase, in: Folates and Pterins, Vol. 1 ( R. L. Blakley and S. J. Benkovic, eds.), pp. 191–253, Wiley, New York.

    Google Scholar 

  • Blakley, R. L., and Benkovic, S. J. (eds.), 1984, Folates and Pterins, Vol. 1, Wiley, New York.

    Google Scholar 

  • Blaney, J. M., Weiner, P. K., Dearing, A., Kollman, P. A., Jorgensen, E. C., Oatley, S. J., Burridge, J. M., and Blake, C. C. F., 1982, Molecular mechanics simulation of protein-ligand interactions: Binding of thyroid hormone analogues to prealbumin, J. Am. Chem. Soc. 104: 6424–6434.

    Article  CAS  Google Scholar 

  • Blaney, J. M., Hansch, C., Silipo, C., and Vittoria, A., 1984, Structure—activity relationships of dihydrofolate reductase inhibitors, Chem. Rev. 84: 333–407.

    Article  CAS  Google Scholar 

  • Bolin, J. T., Filman, D. J., Matthews, D. A., Hamlin, R. C., and Kraut, J., 1982, Crystal structures of Escherichia coil and Lactobacillus casei dihydrofolate reductase refined at 1.7A resolution. I. General features and binding of methotrexate, J. Biol. Chem. 257: 13650–13662.

    PubMed  CAS  Google Scholar 

  • Champness, J. N., Kuyper, L. F., and Beddell, C. R., 1986a, Interaction between dihydrofolate reductase and certain inhibitors, in: Topics in Molecular Pharmacology, Vol. 3 ( A. S. V. Burgen, G. C. K. Roberts, and M. S. Tute, eds.), pp. 335–362, Elsevier, New York.

    Google Scholar 

  • Champness, J. N., Stammers, D. K., and Beddell, C. R., 1986b, Crystallographic investigation of the cooperative interaction between trimethoprim, reduced cofactor and dihydrofolate reductase, FEBS Lett. 199: 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Charlton, P. A., Young, D. W., Birdsall, B., Feeney, J., and Roberts, G. C. K., 1985. Stereochemistry of reduction of the vitamin folic acid by dihydrofolate reductase, J. Chem. Soc. Perkin Trans., 1349, 1353.

    Google Scholar 

  • Cheung, H. T. A., Searle, M. S., Feeney, J., Birdsall, B., Roberts, G. C. K., Kompis, I., and Hammond, S. J., 1986, Trimethoprim binding to Lactobacillus casei dihydrofolate reductase: AC NMR study using selectively 13C-enriched trimethoprim, Biochemistry 25: 1925–1931.

    Article  PubMed  CAS  Google Scholar 

  • Cocco, L., Roth, B., Temple, C., Jr., Montgomery, J. A., London, R. E., and Blakley, R. L., 1983, Protonated state of methotrexate, trimethoprim, and pyrimethamine bound to dihydrofolate reductase, Arch. Biochem. Biophys. 226: 567–577.

    Article  PubMed  CAS  Google Scholar 

  • Filman, D. J., Bolin, J. T., Matthews, D. A., and Kraut, J., 1982, Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7A resolution. II. Environment of bound NADPH and implications for catalysis, J. Biol. Chem. 257: 13663–13672.

    PubMed  CAS  Google Scholar 

  • Finland, M., Kass, E. H., and R. Platt, eds., 1982, Trimethoprim–sulfamethoxazole revisited, Rev. Infect. Dis. 4:185–618.

    Google Scholar 

  • Freisheim, J. H., and Matthews, D. A., 1984, The comparative biochemistry of dihydrofolate reductase, in: Folate Antagonists as Therapeutic Agents, Vol. 1 ( F. M. Sirotnak, J. J. Burchall, W. B. Ensminger, and J. A. Montgomery, eds.), pp. 69–131, Academic Press, New York.

    Google Scholar 

  • Hine, J., and Mookerjee, P. K., 1975, The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contribution, Erro Hyperlink reference not valid.. Chem. 40: 292–298.

    CAS  Google Scholar 

  • Hitchings, G. H., 1983, Functions of tetrahydrofolate and the role of dihydrofolate reductase in cellular metabolism, in: Handbook of Experimental Pharmacology, Vol. 64 ( G. H. Hitchings, ed.), pp. 11–23, Springer-Verlag, Berlin.

    Google Scholar 

  • Hood, K., and Roberts, G. C. K., 1978, Ultraviolet difference-spectroscopic studies of substrate and inhibitor binding to Lactobacillus casei dihydrofolate reductase, Biochem. J. 171: 357–366.

    PubMed  CAS  Google Scholar 

  • Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S. J., and Kraut, J., 1986, Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis, Science 231: 1123–1128.

    Article  PubMed  CAS  Google Scholar 

  • Kompis, I., and Then, R. L., 1984, Rationally designed brodimoprim analogues: Synthesis and biological activities, Eur. J. Med. Chem. Chim. Ther. 19: 529–534.

    CAS  Google Scholar 

  • Kraut, J., and Matthews, D. A., 1987, Dihydrofolate reductase, in: Biological Macromolecules and Assemblies, Vol. III ( F. Jurnak and A. McPherson, eds.), pp. 1–71, Wiley, New York.

    Google Scholar 

  • Kumar, A. A., Blankenship, D. T., Kaufman, B. T., and Freisheim, J. H., 1980, Primary structure of chicken liver dihydrofolate reductase, Biochemistry 19: 667–678.

    Article  PubMed  CAS  Google Scholar 

  • Kuyper, L. F., 1985, Molecular mechanics modeling of dihydrofolate reductase-inhibitor complexes: Correlation between calculated energy and observed affinity, Abstracts of Papers, 189th ACS National Meeting, Miami Beach, FL, April 28-May 3, Washington, DC, Abstr. MEDI 88.

    Google Scholar 

  • Kuyper, L. F., Roth, B., Baccanari, D. P., Ferone, R., Beddell, C. R., Champness, J. N., Stam- mers, D. K., Dann, J. G., Norrington, F. E., Baker, D. J., and Goodford, P. J., 1985, Receptor- based design of dihydrofolate reductase inhibitors: Comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogues, J. Med. Chem. 28: 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Masters, J. N., and Attardi, G., 1983, The nucleotide sequence of the cDNA coding for the human dihydrofolic acid reductase, Gene 21: 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, D. A., Alden, R. A., Bolin, J. T., Freer, S. T., Hamlin, R., Xuong, N., Kraut, J., Poe, M., Williams, M., and Hoogsteen, K., 1977, Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate, Science 197: 452–455.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, D. A., Bolin, J. T., Burridge, J. M., Filman, D. J., Volz, K. W., Kaufman, B. T., Beddell, C. R., Champness, J. N., Stammers, D. K., and Kraut, J., 1985a, Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim, J. Biol. Chem. 260: 381–391.

    PubMed  CAS  Google Scholar 

  • Matthews, D. A., Bolin, J. T., Burridge, J. M., Filman, D. J., Volz, K. W., and Kraut, J., 1985b, Dihydrofolate reductase. The stereochemistry of inhibitor selectivity, J. Biol. Chem. 260: 392–399.

    PubMed  CAS  Google Scholar 

  • Matthews, D. A., Smith, S. L., Baccanari, D. P., Burchall, J. J., Oatley, S. J., and Kraut, J., 1986, Crystal structure of a novel trimethoprim-resistant dihydrofolate reductase specified in Escherichia coli by R-plasmid R67, Biochemistry 25: 4194–4204.

    Article  PubMed  CAS  Google Scholar 

  • Oefner, C., D’arcy, A., and Winkler, F. K., 1988, Crystal structure of human dihydrofolate reductase complexed with folate, Eur. J. Biochem. 174: 377–385.

    Article  PubMed  CAS  Google Scholar 

  • Ollis, W. D., Stoddart, J. F., and Sutherland, I. O., 1974, The conformational behaviour of some medium-sized ring systems, Tetrahedron 30: 1903–1921.

    Article  CAS  Google Scholar 

  • Pettitt, M., and Karplus, M., 1986, Interaction energies: their role in drug design, in: Topics in Molecular Pharmacology, Vol. 3 ( A. S. V. Burgen, G. C. K. Roberts, and M. S. Tute, eds.), pp. 75–113, Elsevier, New York.

    Google Scholar 

  • Phillips, T., and Bryan, R. F., 1969, X-ray crystal structures of the antimalarial agents daraprim and trimethoprim, Acta Crystallogr. Sect. A A25: S200.

    Google Scholar 

  • Piper, J. R., Montgomery, J. A., Sirotnak, F. M., and Chello, P. L., 1982, Syntheses of a-and y-substituted amides, peptides, and esters of methotrexate and their evaluation as inhibitors of folate metabolism, J. Med. Chem. 25: 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Prendergast, N. J., Delcamp, T. J., Smith, P. L., and Freisheim, J. H., 1988, Expression and sitedirected mutagenesis of human dihydrofolate reductase, Biochemistry 27:3664–3671.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Prot. Chem. 34: 167–339.

    Article  CAS  Google Scholar 

  • Roth, B., 1983, Selective inhibitors of bacterial dihydrofolate reductase: Structure-activity relationships, in: Handbook of Experimental Pharmacology, Vol. 64 ( G. H. Hitchings, ed.), pp. 107–127, Springer-Verlag, Berlin.

    Google Scholar 

  • Roth, B., and Cheng, C. C., 1982, Recent progress in the medicinal chemistry of 2,4-diaminopyrimidines, in: Progress in Medicinal Chemistry, Vol. 19 ( C. P. Ellis and G. B. West, eds.), pp. 269–331, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Roth, B., Aig, E., Lane, K., and Rauckman, B. S., 1980, Diamino-5-benzylpyrimidines as antibacterial agents. 4. 6-Substituted trimethoprim derivatives from phenolic Mannich intermediates. Application to the synthesis of trimethoprim and 3,5-dialkylbenzyl analogues, J. Med. Chem. 23: 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Searle, M. S., Forster, M. J., Birdsall, B., Roberts, G. C. K., Feeney, J., Cheung, H. T. A., Kompis, I., and Geddes, A. J., 1988, Dynamics of trimethoprim bound to dihydrofolate reductase, Proc. Natl. Acad. Sci. USA 85: 3787–3791.

    Article  PubMed  CAS  Google Scholar 

  • Singh, U. C., 1988, Probing the salt bridge in the dihydrofolate reductase—methotrexate complex by using the coordinate-coupled free-energy perturbation method, Proc. Natl. Acad. Sci. USA 88: 4280–4284.

    Article  Google Scholar 

  • Stammers, D. K., Champness, J. N., Beddell, C. R., Dann, J. G., Eliopoulos, E., Geddes, A. J., Ogg, D., and North, A. C., 1987, The structure of mouse L1210 dihydrofolate reductase—drug complexes and the construction of a model of human enzyme, FEBS Lett. 218: 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Stone, D., Paterson, S. J., Raper, J. H., and Phillips, A. W., 1979, The amino acid sequence of dihydrofolate reductase from the mouse lymphoma L1210, J. Biol. Chem. 254: 480–488.

    PubMed  CAS  Google Scholar 

  • Subramanian, S., and Kaufman, B. T., 1978, Interaction of methotrexate, folates and pyridine nucleotides with dihydrofolate reductase: Calorimetric and spectroscopic binding studies, Proc. Natl. Acad. Sci. USA 75: 3201–3205.

    Article  PubMed  CAS  Google Scholar 

  • Villafranca, J. E., Howell, E. E., Voet, D. H., Strobel, M. S., Ogden, R. C., Abelson, J. N., and Kraut, J., 1983, Directed mutagenesis of dihydrofolate reductase, Science 222: 782–788.

    Article  PubMed  CAS  Google Scholar 

  • Volz, K. W., Matthews, D. A., Alden, R. A., Freer, S. T., Hansch, C., Kaufman, B. T., and Kraut, J., 1982, Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH, J. Biol. Chem. 257: 2528–2536.

    PubMed  CAS  Google Scholar 

  • Weiner, P. K., and Kollman, P. A., 1981, AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions, J. Comp. Chem. 2: 287–303.

    Article  CAS  Google Scholar 

  • Wong, C. F., and McCammon, J. A., 1986, Dynamics and design of enzymes and inhibitors, J. Am. Chem. Soc. 108: 3830–3832.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Kuyper, L.F. (1990). Receptor-Based Design of Dihydrofolate Reductase Inhibitors. In: Hook, J.B., Poste, G., Schatz, J. (eds) Protein Design and the Development of New Therapeutics and Vaccines. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5739-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5739-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5741-4

  • Online ISBN: 978-1-4684-5739-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics