Skip to main content

Role of Membrane Receptors in Stimulus-Secretion Coupling

  • Chapter
Transduction in Biological Systems

Abstract

In the last two decades there has been an exponential increase in our fundamental knowledge of hormone receptors. The literature accumulated is so vast that it is impossible to cover in any depth, in a short review, all the aspects of hormone-receptor interaction. In this chapter we will consider only two aspects. First, the modulation of the membrane-bound enzyme system adenylate cyclase, and, second, the perturbation of the phosphoinositide cycle caused by neurotransmitters involved in the neural control of catecholamine and insulin secretion. To this end, a mechanism for the generation of intracellular signals resulting from the activation of adrenergic and cholinergic receptors will be also considered, and illustrative examples of receptor-controlled electrical activity and ATP secretion will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.

    Article  PubMed  CAS  Google Scholar 

  2. Smigel, M., Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G., 1984, Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity, Adv. Cyclic Nucleotide Protein Phosphor. Res. 17: 1–18.

    CAS  Google Scholar 

  3. Smigel, M. D., Northup, J. K., and Gilman, A. G., 1982, Characteristics of the guanine nucleotide-binding regulatory component of adenylate cyclase, Rec. Proc. Horm. Res. 38: 601–626.

    CAS  Google Scholar 

  4. Bourne, H. R., Medynski, D., Vandop, C., Sullivan, K., and Chang, F. H., 1985, Genetic and functional studies of pertussis toxin substrates, in: Pertussis Toxin (R. D. Sekura, J. Moss, and M. Vaughan, eds.) Academic, Orlando, pp. 167–184.

    Google Scholar 

  5. Birnbaumer, L., Codina, J., Sunyer, T., Rosenthal, W., Hilderbrandt, J., Cenone, R. A., Caron, M. G., Lefkowitz, R. J., and Sekura, R. D., 1985, Structural and functional properties of N5 and Ni, the regulatory components of adenyl cyclases, in: Pertussis Toxin (R. D. Sekura, J. Moss, and M. Vaughan, eds.), Academic, Orlando, pp. 77–104.

    Google Scholar 

  6. Nakadate, T., Nakari, T., Muraki, T., and Kato, R., 1980, Regulation of plasma insulin level by α2-adrenergic receptors, Eur. J. Pharmacol. 65: 421–424.

    Article  PubMed  CAS  Google Scholar 

  7. Katada, T., and Ui, M., 1977, Perfusion of the pancreas isolated from pertussis-sensitized rats: Potentiation of insulin secretory responses due to β-adrenergic stimulation, Endocrinology 101: 1247–1255.

    Article  PubMed  CAS  Google Scholar 

  8. Katada, T., and Ui, M., 1979, Effect of in vivo pretreatment of rats with a new protein purified from Bordetella pertussis on in vitro secretion of insulin: Role of calcium, Endocrinology 104: 1822–1827.

    Article  PubMed  CAS  Google Scholar 

  9. Yajima, M., Hosada, K., Kanbayashi, Y., Nakamura, T., Nogimori, K., Mizushima, Y., and Ui, M., 1978a, Islets-activating protein (IAP) in Bordetella pertussis that potentiates insulin secretory responses of rats, J. Biochem 83: 295–303.

    PubMed  CAS  Google Scholar 

  10. Yajima, M., Hosoda, K., Kanbayashi, Y, Nakamura, T., Takahashi, I., and Ui, M., 1987b, Biological properties of islets-activating protein (IAP) purified from the culture medium of Bordetella pertussis, J. Biochem. 83: 305–312.

    Google Scholar 

  11. Rodbell, M., Birnbaumer, L., Pohl, S. L., and Krans, H. M. J., 1971, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver, J. Biol. Chem. 246: 1877–1882.

    PubMed  CAS  Google Scholar 

  12. Jakobs, K. H., Saur, W., and Schultz, G., 1978, Inhibition of platelet adenylate cyclase by epinephrine requires GTP, FEBS Lett. 85: 167–170.

    Article  PubMed  CAS  Google Scholar 

  13. Hildebrandt, J. D., Hanoune, J., and Birnbaumer, L., 1982, Guanine nucleotide inhibition of cyc-S49 mouse lymphoma cell membrane adenylyl cyclase, J. Biol. Chem. 257: 14723–14725.

    PubMed  CAS  Google Scholar 

  14. Micheli, R. H., 1975, Inositol phospholipids and cell surface receptor function. Biochem. Biophys. Acta 415: 81–147.

    Google Scholar 

  15. Creba, J. A., Downes, P., Hawkins, P. T., Brewster, G., Micheli, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca-mobilizing hormones, Biochem. J. 212: 733–747.

    PubMed  CAS  Google Scholar 

  16. Griffin, H. D., Hawthorne, J. N., and Sykes, M., 1979, A calcium requirement for the phosphatidylinositol response following activation of presynaptic muscarinic receptors, Biochem. Pharmacol. 28: 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  17. Hokin, L. E., and Hokin, M. R., 1956, The actions of pancreozymin in pancreas slices and the role of phospholipids in enzyme secretion, J. Physiol. 132: 442–453.

    PubMed  CAS  Google Scholar 

  18. Hokin, L. E., and Hokin, M. R., 1958a, Phosphoinositides and protein secretion in pancreas slices, J. Biol. Chem. 233: 805–810.

    PubMed  CAS  Google Scholar 

  19. Hokin, M. R., and Hokin, L. E., 1958b, Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices, J. Biol. Chem. 233: 967–977.

    Google Scholar 

  20. Fain, J. N., and García-Sainz, J. A., 1980, Role of phosphatidylinositol turnover in α 1 and of adenylate cyclase inhibition in α2 effects of catecholamines. Life Sci. 26: 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  21. Ullrich, S., and Wollheim, C., 1985, Expression of both βr and β2- adrenoceptors in an insulin-secreting cell line: Parallel studies of cytosolic free Ca2+ and insulin release, Mol. Pharmacol. 28(2): 100–106.

    PubMed  CAS  Google Scholar 

  22. . Farese, R. V., Sabir, M. A., and Vandor, S. L., 1979, Adrenocorticotropin acutely increases adrenal phosphoinositides, J. Biol. Chem.254: 6842–6844.

    PubMed  CAS  Google Scholar 

  23. Prentki, M., and Wollheim, C. B., 1984, Cytosolic free Ca2+ in insulin-secreting cells and its regulation by isolated organelles, Experientia 40(10): 1052–1060.

    Article  PubMed  CAS  Google Scholar 

  24. Vergara, J., Tsien, R., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82(18): 6352–6356.

    Article  PubMed  CAS  Google Scholar 

  25. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  26. Tyson, C. A., Vande-Zande, H., and Green, D. E., 1976, Phospholipids as ionophores, J. Biol. Chem. 251: 1326–1332.

    PubMed  CAS  Google Scholar 

  27. Takai, Y., Kishimoto, A., Kikkawra, U., Mori, T., and Nishizuka, Y., 1979, Unsaturated di-acylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91: 1218–1224.

    Article  PubMed  CAS  Google Scholar 

  28. Bergman, E. N., and Miller, R. E., 1973, Direct enhancement of insulin secretion by vagal stimulation of the isolated pancreas, Am. J. Physiol. 236: E139-E146.

    Google Scholar 

  29. Porte, J., D. Girardier, L. Seydoux, J. Kanazawa, Y, and Posteraak, J., 1973, Neural regulation of insulin secretion in the dog, J. Clinical Investigation 52: 210–214.

    Article  CAS  Google Scholar 

  30. Milner, R. D. G., and Hales, C. N., 1968, The interaction of various inhibitors and stimuli of insulin release studied with rabbit pancreas in vitro, Biochemical J. 113: 472–479.

    Google Scholar 

  31. Lerner, R. L., and Porte, Jr., D., 1971, Epinephrine: Selective inhibition of the acute insulin response to glucose, J. Clinical Investigation 50: 2453–2457.

    Article  CAS  Google Scholar 

  32. Sorenson, R. L., Eide, R. P., and Seybold, V., 1979, Effect of norepinephrine on insulin, glucagon, and somatostatin secretion in isolated perifused rat islets, Diabetes 28: 899–904.

    Article  PubMed  CAS  Google Scholar 

  33. Gagerman, E., Idahl, L.-A., Meissner, H. P., and Táljedal, I.-B., 1978, Insulin release, cGMP, cAMP, and membrane potential in acetylcholine-stimulated islets, Am. J. Physiol. 4: E493-E500.

    Google Scholar 

  34. Wollheim, C. B., and Sharp, G. W. G., 1981, Regulation of insulin release by calcium, Physiol. Rev. 61: 914–973.

    PubMed  CAS  Google Scholar 

  35. Best, L., and Malaisse, W. J., 1983, Stimulation of phosphoinositide breakdown in rat pancreatic islets by glucose and carbamylcholine, Biochem. Biophys. Res. Commun. 116(1): 9–16.

    Article  PubMed  CAS  Google Scholar 

  36. Best, L., and Malaisse, W. J., 1984, Nutrient and hormone-neurotransmitter stimuli induce hydrolysis of polyphosphoinositides in rat pancreatic islets, Endocrinology 115(5): 1814–1820.

    Article  PubMed  CAS  Google Scholar 

  37. Dunlop, M., Shaw, M., Dimitriadis, E., Gurtler, V., Wark, J., and Larkins, R. G., 1988, Evidence that muscarinic receptors in islet cells are not coupled functionally to adenylate cyclase through the inhibitory guanine nucleotide binding protein (Ni), Horm. Metab. Res. 20(3): 150–153.

    Article  PubMed  CAS  Google Scholar 

  38. Mathias, P. C., Best, L., and Malaisse, W. J., 1985, Stimulation by glucose and carbamylcholine of phospholipase-C in pancreatic islets, Cell. Biochem. Funct. 3(3): 173–177.

    Article  PubMed  CAS  Google Scholar 

  39. Rubin, R. P., 1982, Calcium and Cellular Function. Plenum, New York.

    Google Scholar 

  40. Dean, P. M., and Matthews, E. K., 1970, Glucose-induced electrical activity in pancreatic islet cells, J. Physiol. 210: 255–264.

    PubMed  CAS  Google Scholar 

  41. Meissner, H. P., and Schmelz, H., 1974, Membrane potential of β-cells in pancreatic islets, Pfluegers Arch. 351: 195–206.

    Article  CAS  Google Scholar 

  42. Matthews, E. K., and Sakamoto, Y, 1975, Electrical characteristics of pancreatic islet cells, J. Physiol. 246 : 421–437.

    PubMed  CAS  Google Scholar 

  43. Atwater, I., Dawson, C. M., Eddlestone, G. T., and Rojas, E., 1981, Voltage noise measurements across the pancreatic β-cell membrane: Calcium channel characteristics, J. Physiol. 314: 195–212.

    PubMed  CAS  Google Scholar 

  44. Meissner, H. P., and Preissler, M., 1980, Ionic mechanisms of the glucose-induced membrane potential changes in β-cells, Horm. Metab. Res. (Suppl.) 10: 91–99.

    CAS  Google Scholar 

  45. Ribalet, B., and Beigelman, P. M., 1980, Calcium action potentials and potassium permeability activation in pancreatic β-cells, Am. J. Physiol. 239: C124-C133.

    PubMed  CAS  Google Scholar 

  46. Atwater, I., Ribalet, B., and Rojas, E., 1978, Cyclic changes in potential and resistance of the ß-cell membrane induced by glucose in islets of Langerhans from mouse, J. Physiol. 278: 117–139.

    PubMed  CAS  Google Scholar 

  47. Atwater, I., Ribalet, B., and Rojas, E., 1979, Mouse pancreatic ß-cells: Tetraethylammonium blockage of the potassium permeability increase induced by depolarization, J. Physiol. 288:561–574.

    PubMed  CAS  Google Scholar 

  48. Atwater, I., Dawson, C. M., Ribalet, B., and Rojas, E., 1979, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β-cell, J. Physiol. 288: 575–588.

    PubMed  CAS  Google Scholar 

  49. Atwater, I., Dawson, C. M., Scott, A., Eddlestone, G., and Rojas, E., 1980, The nature of the oscillatory behavior in electrical activity from pancreatic β-cell, Horm. Metab. Res. (Suppl.) 10: 100–107.

    CAS  Google Scholar 

  50. Atwater, I., Carroll, P., and Li, M. X., 1989, Electrophysiology of the pancreatic β-cell, in: Molecular and Cellular Biology of Diabetes Mellitus (B. Draznin, S. Melmed, and D. Le Roith, eds.), Volume 1, pp. 49–68.

    Google Scholar 

  51. Santos, R. M, and Rojas, E., 1989, Muscarinic receptor modulation of glucose-induced electrical activity in mouse pancreatic β-cells, FEBS Lett. 249: 411–417.

    Article  PubMed  CAS  Google Scholar 

  52. Birdsall, N. J. M., Hulme, E. C., and Stockton, J. M., 1983, Muscarinic receptor heterogeneity, in: Proc. International Symposium on Subtypes of Muscarinic Receptors (B.I. Hirschowitz, R. Hammer, A. Giachetti, J. K. Keirns, and R. R. Levine, eds.), Supplement to Trends in Pharmacological Sciences, pp. 4–8.

    Google Scholar 

  53. Watson, M., Vickrpy, T. W., Roeske, W. R., and Yamamura, H. I., 1983, Subclassification of muscarinic receptors based upon the selective antagonist pirenzepine, in: Proc. International Symposium on Subtypes of Muscarinic Receptors (B.I. Hirschowitz, R. Hammer, A. Giachetti, J. K. Keirns, and R. R. Levine, eds.), Supplement to Trends in Pharmacological Sciences, pp. 9–11.

    Google Scholar 

  54. Mitchelson, F., 1983, Heterogeneity in muscarinic receptors: Evidence from pharmacological studies with antagonists, in: Proc. International Symposium on Subtypes of Muscarinic Receptors (B.I. Hirschowitz, R. Hammer, A. Giachetti, J. K. Keirns, and R. R. Levine, eds.), Supplement to Trends in Pharmacological Sciences, pp. 12–16.

    Google Scholar 

  55. Adams, P. R., and Brown, D. A., 1982, Synaptic inhibition of the M-current: Slow excitatory postsynaptic potential mechanism in bullfrog sympathetic neurons, J. Physiol. 332: 263–272.

    PubMed  CAS  Google Scholar 

  56. Hashiguchi, T., Kobayashi, H., Tosaka, T., and Libet, B., 1982, Two muscarinic depolarizing mechanisms in mammalian sympathetic neurones, Brain Res. 242: 378–382.

    Article  PubMed  CAS  Google Scholar 

  57. Jones, S. W., 1985, Muscarinic and peptidergic excitation of bullfrog sympathetic neurons, J. Physiol. 366: 63–87.

    PubMed  CAS  Google Scholar 

  58. Kawatani, M., Rutigliano, M., and Degroat, W. C., 1985, Depolarization and muscarinic excitation induced in a sympathetic ganglion by vasoactive intestinal polypeptide, Science 229: 879–881.

    Article  PubMed  CAS  Google Scholar 

  59. Kuffler, S. W., and Selnowski, T. J., 1983, Peptidergic and muscarinic excitation at amphibian synapses, J. Physiol. 341: 257–218.

    PubMed  CAS  Google Scholar 

  60. Santana de Sa, S, Ferrer, R., Rojas, E., and Atwater, I., 1983, Effects of adrenaline and noradrenaline on glucose-induced electrical activity of mouse pancreatic β-cell, Quar. J. Phys. 8: 247–258.

    Google Scholar 

  61. Takai, A., and Tornita, T., 1980, Effects of quinine on the α-action of adrenaline in the guinea pig Taenia coli, J. Physiol. 308: 54–55P.

    Google Scholar 

  62. Rojas, E., Pollard, H. B., and Heldman, E., 1985, Real-time measurements of acetylcholine-induced release of ATP from bovine medullary chromaffin cells, FEBS Lett. 185: 323–327.

    Article  PubMed  CAS  Google Scholar 

  63. Oka, M., Isosaki, M., and Watanabe, J., 1980, Calcium flux and catecholamine release in isolated bovine adrenal medullary chromaffin cells: Effects of nicotinic and muscarinic stimulation, Adv. Biosci. 36: 29–33.

    Google Scholar 

  64. Prentki, M., Biden, T. J., Danjicc, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984, Rapid mobilization of Ca from rat insulinoma microsomes by inositol-l,4,5-trisphosphate, Nature 309: 562–565.

    Article  PubMed  CAS  Google Scholar 

  65. Forsberg, E. J., Rojas, E., and Pollard, H. B., 1986, Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells, J. Biol. Chem. 261(11): 4915–4920.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Rojas, E., Santos, R.M., Atwater, I. (1990). Role of Membrane Receptors in Stimulus-Secretion Coupling. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics