Skip to main content

Transduction, Signal Transference, and Encoding in Composite Chemoreceptors: A Comparison between Gustatory and Arterial Chemoreceptors

  • Chapter
Transduction in Biological Systems
  • 74 Accesses

Abstract

The chemoreceptor organs are specialized to detect the steady levels and changes in the concentration of chemical constituents in external or internal environments. The receptor sites may be located either on the membrane of neurons themselves (simple or primary receptors) or on specialized receptor cells (composite or secondary receptors). In this last case, stimuli do not act on components of primary sensory neurons, but require the intervention of epithelioid receptor cells as transducer elements and of receptoneural synapses for the signal transference from those cells to the sensory endings of afferent neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donoso, A., and Zapata, P., 1976, Effects of denervation and decentralization upon taste buds, Experientia 32: 591–592.

    Article  PubMed  CAS  Google Scholar 

  2. De Castro, F., 1926, Sur la structure et l’innervation de la glande intercarotidienne (glomus car-oticum) de l’homme et des mammifères, et sur un nouveau système d’innervation autonome du nerf glossopharyngien, Trab. Lab. Invest. Biol. Univ. Madrid 24: 365–432.

    Google Scholar 

  3. Eyzaguirre, C., and Zapata, P., 1984, Perspectives in carotid body research, J. Appl. Physiol. 57: 931–957.

    PubMed  CAS  Google Scholar 

  4. Hess, A., and Zapata, P., 1972, Innervation of the cat carotid body: Normal and experimental studies, Fed. Proc. 31: 1365–1382.

    PubMed  CAS  Google Scholar 

  5. Biscoe, T. J., Lall, A., and Sampson, S. R., 1970, Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve, J. Physiol. 208: 133–152.

    PubMed  CAS  Google Scholar 

  6. Fidone, S. J., Zapata, P., and Stensaas, L. J., 1977, Axonal transport of labeled material into sensory nerve endings of cat carotid body, Brain Res. 124: 9–28.

    Article  PubMed  CAS  Google Scholar 

  7. Smith, P. G., and Mills, E., 1979, Physiological and ultrastructural observations on regenerated carotid sinus nerves after removal of the carotid bodies in cats, Neuroscience 4:2009–2020.

    Article  PubMed  CAS  Google Scholar 

  8. Verna, A., Roumy, M., and Leitner, L. M., 1975, Loss of chemoreceptive properties of the rabbit carotid body after destruction of the glomus cells, Brain Res. 100: 13–23.

    Article  PubMed  CAS  Google Scholar 

  9. Zapata, P., Stensaas, L. J., and Eyzaguirre, C., 1976, Axon regeneration following a lesion of the carotid nerve: electrophysiological and ultrastructural observations, Brain Res. 113: 235–253.

    Article  PubMed  CAS  Google Scholar 

  10. Monti-Bloch, L., Stensaas, L. J., and Eyzaguirre, C., 1983, Carotid body grafts induce chemosen-sitivity in muscle nerve fibers of the cat, Brain Res. 270: 77–92.

    Article  PubMed  CAS  Google Scholar 

  11. Sato, T., 1980, Recent advances in the physiology of taste cells, Progr. Neurobiol. 14: 25–67.

    Article  CAS  Google Scholar 

  12. Eyzaguirre, C., Fidone, S. J., and Zapata, P., 1972, Membrane potentials changes recorded from the mucosa of the toad’s tongue during chemical stimulation, J. Physiol. 221: 515–532.

    PubMed  CAS  Google Scholar 

  13. Stensaas, L. J., 1971, The fine structure of fungiform papillae and epithelium of the tongue of a South American toad, Calyptocephalella gayi, Am. J. Anat. 131: 443–462.

    Article  CAS  Google Scholar 

  14. Okada, Y., Miyamoto, T., and Sato, T., 1988, Ionic mechanisms of generation of receptor potential in response to quinine in frog taste cell, Brain Res. 450: 295–302.

    Article  PubMed  CAS  Google Scholar 

  15. Roper, S., 1983, Regenerative impulses in taste cells, Science 220: 1311–1312.

    Article  PubMed  CAS  Google Scholar 

  16. Teeter, J., 1987, Quasi-regenerative responses to chemical stimuli in in vivo taste cells of the mudpuppy, Ann. N. Y. Acad. Sci. 510: 652–654.

    Article  Google Scholar 

  17. Teeter, J., Funakoshi, M., Kurihara, K., Roper, S., Sato, T, and Tonosaki, K., 1987, Generation of the taste cell potential, Chem. Senses 12: 217–234.

    Article  CAS  Google Scholar 

  18. Kinnamon, S. C., and Roper, S.D., 1987, Voltage-dependent ionic currents in dissociated mudpuppy taste cells, Ann. N. Y. Acad. Sci. 510: 413–416.

    Article  Google Scholar 

  19. Kinnamon, S. C., and Roper, S. D., 1988, Membrane properties of isolated mudpuppy taste cells, J. Gen. Physiol. 91: 351–371.

    Article  PubMed  CAS  Google Scholar 

  20. Kinnamon, S. C., Dionne, V. E., and Beam, K. G., 1988, Apical localization of K+ channels in taste cells provides the basis for sour taste transduction, Proc. Natl. Acad. Sci. USA. 85: 7023–7027.

    Article  PubMed  CAS  Google Scholar 

  21. Avenet, P., and Lindemann, B., 1987, Patch-clamp study of isolated taste receptor cells of the frog, J. Membr. Biol. 97: 223–240.

    Article  PubMed  CAS  Google Scholar 

  22. Yang, J., and Roper, S.D., 1987, Dye-coupling in taste buds in the mudpuppy, Necturus maculosus, J. Neurosci. 7: 3561–3565.

    CAS  Google Scholar 

  23. Soeda, H., Sakudo, F., and Noda, K., 1985, Relation between translingual potential changes induced by NaCl in the bullfrog tongue and taste nerve activity, Jap. J. Physiol. 35: 1101–1105.

    Article  CAS  Google Scholar 

  24. Simon, S. A., Robb, R., and Garvin, J. L., 1986, Epithelial responses of rabbit tongues and their involvement in taste transduction, Am. J. Physiol. 251: R598-R608.

    PubMed  CAS  Google Scholar 

  25. Murayama, N., 1988, Interaction among different sensory units within a single fungiform papilla in the frog tongue, J. Gen. Physiol. 91: 685–701.

    Article  PubMed  CAS  Google Scholar 

  26. Borg, G., Diamant, H., Ström, L., and Zotterman, Y., 1967, The relation between neural and perceptual intensity: A comparative study on the neural and psychophysical responses to taste stimuli, J. Physiol. 192: 13–20.

    PubMed  CAS  Google Scholar 

  27. Morimoto, K., and Sato, M., 1982, Role of monoamines in afferent synaptic transmission in frog taste organ, Jap. J. Physiol. 32: 855–871.

    Article  CAS  Google Scholar 

  28. Nagahama, S., and Kurihara, K., 1985, Norepinephrine as a possible transmitter involved in synaptic transmission in frog taste organs and Ca dependence on its release, J. Gen. Physiol. 85: 431–442.

    Article  PubMed  CAS  Google Scholar 

  29. Eyzaguirre, C., Baron, M., Hayashida, Y., Monti-Bloch, L., and Gallego, R., 1980, Effects of different stimuli on the glomus cell membrane, Adv. Physiol. Sci. 10: 399–408.

    Google Scholar 

  30. Oyama, Y., Walker, J. L., and Eyzaguirre, C., 1986, The intracellular chloride activity of glomus cells in the isolated rabbit carotid body, Brain Res. 368: 167–169.

    Article  PubMed  CAS  Google Scholar 

  31. Hee, S. F., Wei, J. Y., and Eyzaguirre, C., 1988, Intracellular pH and some membrane characteristics of cultured carotid body cells, 9th International Symposium on Arterial Chemoreceptors, Park City, Abstract, p. 41.

    Google Scholar 

  32. Hayashida, Y., and Eyzaguirre, C., 1979, Voltage noise of carotid-body type I cells, Brain Res. 167: 189–194.

    Article  PubMed  CAS  Google Scholar 

  33. Monti-Bloch, L., Abudara, V, and Clavijo, J., 1988, Electric communications between glomus cells of the rat carotid body, 9th International Symposium on Arterial Chemoreceptors, Park City, Abstract, p. 59.

    Google Scholar 

  34. Duchen, M. R., Caddy, K. W. T, Kirby, G. C., Patterson, D. L., Ponte, J., and Biscoe, T J., 1988, Biophysical studies of the cellular elements of the rabbit carotid body, Neuroscience 26: 291–311.

    Article  PubMed  CAS  Google Scholar 

  35. Lopez-Barneo, J., Lopez-Lopez, J. R., Urena, J., and Gonzalez, C., 1988, Chemotransduction in the carotid body: K+ current modulated by p02 in type I chemoreceptor cells, Science 241: 580–582.

    Article  PubMed  CAS  Google Scholar 

  36. Delpiano, M. A., Hescheler, J., and Acker, H., 1988, Evidence for O2-sensitive ionic channels in carotid body type-I cells, Physiologist 31: A172.

    Google Scholar 

  37. Eyzaguirre, C., and Zapata, P., 1968, The release of acetylcholine from carotid body tissues. Further study on the effects of ACh and cholinergic blocking agents on the chemosensory discharge, J. Physiol. 195:589–607.

    PubMed  CAS  Google Scholar 

  38. Fidone, S. J., Stensaas, L. J., and Zapata, P., 1983, Sites of synthesis, storage, release and recognition of biogenic amines in carotid bodies, in: Physiology of the Peripheral Arterial Chemoreceptors (H. Acker and R. G. O’Regan, eds.), Elsevier/North-Holland, Amsterdam, pp. 21–44.

    Google Scholar 

  39. Wang, Z. Z., Dinger, B., Fidone, S., and Stensaas, L. J., 1988, The localization and coexistence of biogenic amines and neuropeptides in carotid body type I cells, 9th International Symposium on Arterial Chemoreceptors, Park City, Abstract, p. 13.

    Google Scholar 

  40. Zapata, P., 1975, Effects of dopamine on carotid chemo- and baroreceptors in vitro, J. Physiol. 244: 235–251.

    PubMed  CAS  Google Scholar 

  41. Liados, F., and Zapata, P., 1978, Effects of dopamine analogues and antagonists on carotid body chemosensors in situ, J. Physiol. 274: 487–499.

    Google Scholar 

  42. Nishi, K., and Stensaas, L. J., 1974, The ultrastructure and source of nerve endings in the carotid body, Cell Tissue Res. 154: 303–319.

    Article  PubMed  CAS  Google Scholar 

  43. Hayashida, Y., Koyano, H., and Eyzaguirre, C., 1980, An intracellular study of chemosensory fibers and endings, J. Neurophysiol. 44: 1077–1088.

    PubMed  CAS  Google Scholar 

  44. Zapata, P., and Eyzaguirre, C., 1985, Bioelectric potentials in the carotid body, Brain Res. 331: 39–50.

    Article  PubMed  CAS  Google Scholar 

  45. Belmonte, C., and Gallego, R., 1983, Membrane properties of cat sensory neurons with chemoreceptor and baroreceptor endings, J. Physiol. 342: 603–614.

    PubMed  CAS  Google Scholar 

  46. Arvidson, K., and Friberg, U., 1980, Human taste: Response and taste bud number in fungiform papillae, Science 209: 807–808.

    Article  PubMed  CAS  Google Scholar 

  47. Scott, T. R., and Chang, F. C. T., 1984, The state of gustatory neural coding, Chem. Senses 8: 297–314.

    Article  Google Scholar 

  48. Alcayaga, J., Iturriaga, R., and Zapata, P., 1986, Carotid body chemoreceptor excitation produced by carotid occlusion, Acta Physiol. Pharmacol. Latinoam. 36: 199–215.

    PubMed  CAS  Google Scholar 

  49. Alcayaga, J., Iturriaga, R., and Zapata, P., 1988, Flow-dependent chemosensory activity in the carotid body superfused in vitro, Brain Res. 455: 31–37.

    Article  PubMed  CAS  Google Scholar 

  50. Nolan, W. F., Donnelly, D. F., Smith, E. J., and Dutton, R. E., 1984, Nonrandom chemoreceptor activity during superfusion in vitro, Brain Res. 292: 194–197.

    Article  PubMed  CAS  Google Scholar 

  51. Serani, A., and Zapata, P., 1981, Relative contribution of carotid and aortic bodies to cyanide-induced ventilatory responses in the cat, Arch. Int. Pharmacodyn. Thér. 252: 284–297.

    PubMed  CAS  Google Scholar 

  52. Serani, A., Lavados, M., and Zapata, P., 1983, Cardiovascular responses to hypoxia in the spontaneously breathing cat: Reflexes originating from carotid and aortic bodies, Arch. Biol. Med. Exp. 16: 29–41.

    PubMed  CAS  Google Scholar 

  53. Iturriaga, R., Alcayaga, J., and Zapata, P., 1988, Contribution of carotid body chemoreceptors and carotid sinus baroreceptors to the ventilatory and circulatory reflexes produced by common carotid occlusion, Acta Physiol. Pharmacol. Latinoam. 38: 27–48.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Zapata, P. (1990). Transduction, Signal Transference, and Encoding in Composite Chemoreceptors: A Comparison between Gustatory and Arterial Chemoreceptors. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics