Skip to main content

Ca2+ Release Channel of Sarcoplasmic Reticulum: Characterization of the Regulatory Sites

  • Chapter
Book cover Transduction in Biological Systems

Abstract

This chapter focuses on an unresolved aspect of muscle function, namely, how does sarcoplasmic reticulum (SR) release calcium ions, thereby causing muscle to contract? A schematic drawing of a small segment of a muscle cell is depicted in the upper part of Fig. 1. Two key structures in excitation-contraction coupling—the surface membrane, composed of the sarcolemma and transverse (T-)system, and the SR—are shown. SR is an intracellular membrane system whose main function is to regulate muscle contraction and relaxation by releasing and taking up again the released Ca2+. Rapid release from skeletal muscle SR is triggered by a surface membrane potential that is thought to be communicated to SR at specialized areas where the SR comes in close contact with the T-tubule, and protein bridges (“feet”) are present which span the gap between the two membrane systems. However, how calcium ions are released from SR has remained an enigma(1,2) (also see Chapter 22, this book). One hypothesis is that T-tubule depolarization increases in the junctional gap the concentration of a chemical messenger such as Ca2+, which then opens a Ca2+ -channel in the SR membrane. Another popular hypothesis suggests that the feet are in direct contact with a voltage-sensing molecule in the T-tubule membrane. During T-tubule depolarization the feet undergo a conformational change which regulates the opening of the SR Ca2+-channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57: 71–108.

    PubMed  CAS  Google Scholar 

  2. Somlyo, A. P., 1985, The messenger across the gap, Nature 316: 298–299.

    Article  PubMed  CAS  Google Scholar 

  3. Smith, J. S., Coronado, R., and Meissner, G., 1985, Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels, Nature 316: 446–449.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, J. S., Coronado, R., and Meissner, G., 1986, Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum: Activation by Ca2+ and ATP and modulation by Mg2+, J. Gen. Physiol. 88: 573–588.

    Article  PubMed  CAS  Google Scholar 

  5. Rousseau, E., Smith, J. S., Henderson, J. S., and Meissner, G., 1986, Single-channel and 45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel, Biophys. J. 50: 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  6. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q-Y., and Meissner, G., 1988, Purification and reconstitution of the calcium release channel from skeletal muscle, Nature 331: 315–319.

    Article  PubMed  CAS  Google Scholar 

  7. Lai, F. A., Anderson, K. Rousseau, Liu, Q. Y., and Meissner, G., 1988, Evidence for a Ca2+ -channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 151: 441–449.

    Article  PubMed  CAS  Google Scholar 

  8. Inui, M., Saito, A., and Fleischer, S., 1987, Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with feet structures, J. Biol. Chem. 262: 15637–15642.

    PubMed  CAS  Google Scholar 

  9. Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P., 1987, Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ -permeable pore of the calcium release channel, J. Biol. Chem. 34: 16636–16643.

    Google Scholar 

  10. Meissner, G., 1984, Adenine nucleotide stimulation of calcium-induced calcium release in sarcoplasmic reticulum, J. Biol. Chem. 259: 2365–2374.

    PubMed  CAS  Google Scholar 

  11. Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel calcium and barium currents of large and small conductance from sarcoplasmic reticulum, Biophys. J. 50: 921–928.

    Article  PubMed  CAS  Google Scholar 

  12. Meissner, G., 1983, Monovalent ion and calcium ion fluxes in sarcoplasmic reticulum, Mol. Cell. Biochem. 55: 65–82.

    Article  PubMed  CAS  Google Scholar 

  13. Nagasaki, K., and Kasai, M., 1983, Fast release of calcium from sarcoplasmic reticulum vesicles monitored by Chlortetracycline fluorescence, J. Biochem. (Tokyo) 94: 1101–1109.

    CAS  Google Scholar 

  14. Ikemoto, N., Antoniu, B., and Meszaros, L. G., 1985, Rapid flow chemical quench studies of calcium release from isolated sarcoplasmic reticulum, J. Biol. Chem. 260: 14096–14100.

    PubMed  CAS  Google Scholar 

  15. Meissner, G., Darling, E., and Eveleth, J., 1986, Kinetics of rapid calcium release by sarcoplasmic reticulum: Effects of Ca2+, Mg2+, and adenine nucleotide, Biochemistry 25: 236–244.

    Article  PubMed  CAS  Google Scholar 

  16. Meissner, G., and Henderson, J. S., 1987, Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2 +, adenine nucleotide and calmodulin, J. Biol. Chem. 262: 3065–3073.

    PubMed  CAS  Google Scholar 

  17. Kushmerick, M. J., 1983, Energetics of muscle contraction, in: Handbook of Physiology, Section 10: Skeletal Muscle (L. D. Peachey, R. H. Adrian, and S. R. Geiger, Eds.), pp. 189–236, American Physicological Society, Bethesda, MD.

    Google Scholar 

  18. Gupta, R. K., and Moore, R. D., 1980, 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle, J. Biol. Chem. 255: 3987–3993.

    PubMed  CAS  Google Scholar 

  19. Baylor, S. M., Chandler, W. K., and Marshall, M. W., 1982, Optical measurements of intracellular pH and magnesium in frog skeletal muscle, J. Physiol. (London) 331: 105–137.

    CAS  Google Scholar 

  20. Meissner, G., 1986, Evidence of a role for calmodulin in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum, Biochemistry 25: 244–251.

    Article  PubMed  CAS  Google Scholar 

  21. Kim, D.H., and Ikemoto, N., 1986, Involvement of 60-kilodalton phosphoprotein in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum, J. Biol. Chem. 261: 11674–11679.

    PubMed  CAS  Google Scholar 

  22. Meissner, G., 1988, Ionic permeability of isolated muscle sarcoplasmic reticulum and liver endoplasmic reticulum vesicles, Meth. Enzym. 157: 417–437.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Meissner, G. (1990). Ca2+ Release Channel of Sarcoplasmic Reticulum: Characterization of the Regulatory Sites. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics