Skip to main content

Second Messengers in Invertebrate Phototransduction

  • Chapter
Transduction in Biological Systems

Abstract

In visual transduction, the absorption of light by specialized photoreceptor cells evokes a change in voltage across the plasma membrane termed the receptor potential. The problem of how this excitation process occurs has fascinated physiologists and biochemists for over 100 years. We now know that the process involves three fundamentally different phases. In the first phase, the absorption of light by the visual pigment, rhodopsin, is transduced into a change in the conformation of the visual pigment. This phase involves no amplification because one photon alters the conformation of only one rhodopsin molecule. In the second phase, chemical amplification produces a large change in the concentration of a second messenger. In the final phase, this concentration change is detected by membrane channels which gate the flow of ions, thereby generating the receptor potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hurley, J. B., 1987, Molecular properties of the cGMP cascade of vertebrate photoreceptors, Ann. Rev. Physiol. 49: 793–812.

    Article  CAS  Google Scholar 

  2. Pugh, E. N., Jr., 1987, The nature and identity of the internal excitational transmitter of vertebrate phototransduction, Ann. Rev. Physiol. 49: 715–741.

    Article  CAS  Google Scholar 

  3. McNaughton, P. A., Cervetto, L., and Nunn, B. J., 1986, Measurement of the intracellular free calcium concentration in salamander rods, Nature 322: 261–263.

    Article  PubMed  CAS  Google Scholar 

  4. Matthew, H. R., Murphy, R. L. W., Fain, G. L., and Lamb, T. D., 1988, Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration, Nature 334: 67–69.

    Article  Google Scholar 

  5. Nakatani, K., and Yau, K.-W., 1988, Calcium and light adaptation in retinal rods and cones, Nature 334: 69–71.

    Article  PubMed  CAS  Google Scholar 

  6. Koch, K. W., and Stryer, L., 1988, Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions, Nature 334: 64–66.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, J. E., and Coles, J. A., 1979, Saturation of the response to light in Limulus ventral photoreceptor, J. Physiol. 296: 373–392.

    PubMed  CAS  Google Scholar 

  8. Fain, G. L., and Lisman, J. E., 1981, Membrane conductances of photoreceptors, Prog. Biophys. Molec. Biol. 37: 91–147.

    Article  CAS  Google Scholar 

  9. Detwiler, P. B., Conner, J. A., and Bodoia, R. D., 1982, Gigaseal patch clamp recordings from outer segments of intact retinal rods, Nature 300: 59–61.

    Article  PubMed  CAS  Google Scholar 

  10. Bacigalupo, J., and Lisman, J. E., 1983, Single-channel currents activated by light in Limulus ventral photoreceptors, Nature 304: 268–270.

    Article  PubMed  CAS  Google Scholar 

  11. Clark, A. W., Millecchia, R., and Mauro, A., 1969, The ventral photoreceptor of Limulus. I. The microanatomy, J. Gen. Physiol. 54: 289–309.

    Article  PubMed  CAS  Google Scholar 

  12. Stern, J., Chinn, K., Bacigalupo, J., and Lisman, J. E., 1982, Distinct lobes of Limulus ventral photoreceptors. I. functional and anatomical properties of lobes revealed by removal of glial cells, J. Gen. Physiol. 80: 825–837.

    Article  PubMed  CAS  Google Scholar 

  13. Caiman, B., and Chamberlain, S., 1982, Distinct lobes of Limulus ventral photoreceptors. II. Structure and ultrastructure, J. Gen. Physiol. 80: 839–862.

    Article  Google Scholar 

  14. Lisman, J. E., and Brown, J. E., 1972, The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors, J. Gen. Physiol. 59: 701–719.

    Article  PubMed  CAS  Google Scholar 

  15. Brown, J. E., Brown, P. K., and Pinto, L. H., 1972, Detection of light-induced changes in intracellular ionized calcium concentration in Limulus ventral photoreceptor using arsenazo III, J. Physiol. 267: 299–320.

    Google Scholar 

  16. Brown, J. E., and Blinks, J. R., 1974, Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors, J. Gen. Physiol. 64: 643–665.

    Article  PubMed  CAS  Google Scholar 

  17. Lisman, J. E., and Brown, J. E., 1975, Effects of intracellular injection of calcium buffers in Limulus ventral photoreceptors, J. Gen. Physiol. 66: 489–506.

    Article  PubMed  CAS  Google Scholar 

  18. Lisman, J. E., and Strong, J. A., 1979, The initiation of excitation and adaptation in Limulus ventral photoreceptors, J. Gen. Physiol. 73: 219–243.

    Article  PubMed  CAS  Google Scholar 

  19. Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate, Nature 311: 157–160.

    Article  PubMed  CAS  Google Scholar 

  20. Brown, J. E., Rubin, L. J., Ghalayini, A. J., Tarver, A. P., Irvine, R. F., Berridge, M. J., and Anderson, R. E., 1984, Evidence that myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors, Nature 311: 160–163.

    Article  PubMed  CAS  Google Scholar 

  21. Brown, J. E., and Rubin, L. J., 1984, A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors, Biochem. Biophys. Res. Comm. 125: 1137–1142.

    Article  PubMed  CAS  Google Scholar 

  22. Payne, R., Corson, D. W., Fein, A., and Berridge, M. J., 1986, Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5-trisphosphate result from a rise in intracellular calcium, J. Gen. Physiol. 88: 127–142.

    Article  PubMed  CAS  Google Scholar 

  23. Szuts, E. Z., Wood, S. F., Reid, M. S., and Fein, A., 1986, Light stimulates the rapid formation if inositol trisphosphate in squid retinas, Biochem J. 240: 929–932.

    PubMed  CAS  Google Scholar 

  24. Brown, J. E., Watkins, D. C., and Malbon, C. C., 1987, Light-induced changes in the content of inositol phosphates in squid Loligo pealei retina, Biochem J. 247: 293–297.

    PubMed  CAS  Google Scholar 

  25. Vandenberg, C.A., and Montai, M., 1984, Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphinositides in squid photoreceptor membranes, Biochemistry 23: 2347–2352.

    Article  PubMed  CAS  Google Scholar 

  26. Baer, K. M., and Saibil, H. R., 1988, Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes, J. Biol. Chem. 263: 17–20.

    PubMed  CAS  Google Scholar 

  27. Bloomquist, B. T., Shortridge, R. D., Schneuwly, W., Perdew, M., Montell, C., Steller, H., Rubin, G., and Pak, W. L., 1988, Isolation of a putative phospholipase-C gene of Drosophila, norpA, and its role in phototransduction, Cell 54: 723–733.

    Article  PubMed  CAS  Google Scholar 

  28. Devary, O., Heichal, O., Blumenfeld, A., Cassei, D., Suss, E., Barash, S., Rubinstein, C.T., Minke, B., and Selinger, Z., 1987, Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors, P.N.A.S. (USA) 84: 6939–6943.

    Article  CAS  Google Scholar 

  29. Tsuda, M., 1987, Octopus G-protein: A signal-coupling protein in invertebrate photoreceptor, in: Proceedings of the International Conference on Retinal Proteins (V. Ochinnikov, ed.), VNU Science Press, The Netherlands, pp. 393–404.

    Google Scholar 

  30. Payne, R., Corson, D.W., and Fein, A., 1986, Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors, J. Gen. Physiol. 88: 101–12.

    Google Scholar 

  31. Bolsover, S. R., and Brown, J. E., 1985, Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus photoreceptors, J. Physiol. 364: 381–393.

    PubMed  CAS  Google Scholar 

  32. Payne, R., and Fein, A., 1986, The initial response of Limulus ventral photoreceptors to bright flashes: released calcium as a synergist to excitation, J. Gen. Physiol. 87: 243–269.

    Article  PubMed  CAS  Google Scholar 

  33. Bolsover, S. R., and Brown, J. E., 1982, Injection of guanosine and adenosine nucleotides into Limulus ventral photoreceptor cells, J. Physiol. 332: 325–342.

    PubMed  CAS  Google Scholar 

  34. Stern, J. H., and Lisman, J. E., 1982, Internal dialysis of Limulus ventral photoreceptors, Proc. Natl. Acad. Sci. 79: 7580–7584.

    Article  PubMed  CAS  Google Scholar 

  35. Saibel, H. R., 1984, A light-stimulated increase in cyclic GMP in squid photoreceptors, FEBS Lett. 168: 213–216.

    Article  Google Scholar 

  36. Johnson, E. C., Robinson, P. R., and Lisman, J. E., 1986, Cyclic GMP is involved in the excitation of invertebrate photoreceptors, Nature 324: 468–470.

    Article  PubMed  CAS  Google Scholar 

  37. Robinson, P. R., Cote, R. H., and Lisman, J. E., 1987, Guanylate cyclase activity in squid photoreceptor membranes, Biophys. J. 51: 269a.

    Article  Google Scholar 

  38. Inoue, M., and Brown, J. E., 1988, Cyclic GMP phosphodiesterase in Limulus ventral eye, ARVO abstr:218.

    Google Scholar 

  39. Miller, W. H., Gorman, R. E., and Bitensky, M. W., 1971, Cyclic adenosine monophosphate: function in photoreceptors, Science 174: 295–297.

    Article  PubMed  CAS  Google Scholar 

  40. Wulff, V. J., 1973, The effect of cyclic AMP and aminophylline on Limulus lateral eye retinular cells, Vision Res. 13: 2335–2344.

    Article  PubMed  CAS  Google Scholar 

  41. Corson, D. W., Fein, A., and Schmidt, J., 1979, Two effects of phosphodiesterase inhibitors in Limulus ventral photoreceptors, Brain Res. 176: 365–368.

    Article  PubMed  CAS  Google Scholar 

  42. Faddis, M., and Brown, J. E., 1988, Effects of drugs presumed to change intracellular cGMP on voltage-clamp current in Limulus ventral photoreceptors, ARVO abstr:350.

    Google Scholar 

  43. Fesenko, S. S., Kolesnikou, A. L., and Lyubarsky, E. E., 1985, Induction by cyclic GMP of cationic conductance on the plasma membrane of the retinal rod outer segment, Nature 313: 310–313.

    Article  PubMed  CAS  Google Scholar 

  44. Bacigalupo, J., Johnson, E., and Lisman, J. E., 1987, A low-conductance light-dependent channel observed in cell-attached and excised patches of Limulus ventral photoreceptors, Biophys. J. 51: 15a.

    Google Scholar 

  45. Baylor, D. A., Lamb, T. D., and Yau, K.-W., 1979, Responses of retinal rods to single photons, J. Physiol. 288: 613–634.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bacigalupo, J., Johnson, E., Robinson, P., Lisman, J.E. (1990). Second Messengers in Invertebrate Phototransduction. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics