Skip to main content

A Pharmacological Approach to the Physiological Mechanism of Excitation-Contraction Coupling

  • Chapter

Abstract

The use of pharmacologic agents as tools to aid in the characterization and separation of physiological processes is not a new idea. The availability of specific toxins like tetrodotoxin and saxitoxin made it easy to test for the presence of sodium channels in excitable cells and made possible the purification(1) reconstitution(2,3) and cloning(4) of such channels. We hope to utilize a pharmacologic approach here to determine whether a Ca2+ -channel isolated recently from skeletal muscle sarcoplasmic reticulum (SR) is the one of physiological importance. Is it the right channel? We know several methods exist to cause Ca2+ release from SR.(5,6) If we had specific inhibitors for each form of release, we could test whether the releases or channels they blocked were involved in excitation-contraction coupling. We will examine the role of Ca2+ -induced Ca2+ release channels first because these are the channels already isolated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Elec-trophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. USA 75: 2606–2610.

    Article  PubMed  CAS  Google Scholar 

  2. Talvenheimo, J. A., Tamkun, M. M., and Catterall, W. A., 1982, Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain, J. Biol. Chem. 257: 11868–11871.

    PubMed  CAS  Google Scholar 

  3. Weigele, J. B., and Barchi, R. L., 1982, Functional reconstitution of the purified sodium channel protein from rat sarcolemma, Proc. Natl. Acad. Sci. USA 79: 3651–3655.

    Article  PubMed  CAS  Google Scholar 

  4. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312: 121–127.

    Article  PubMed  CAS  Google Scholar 

  5. Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57: 71–108.

    PubMed  CAS  Google Scholar 

  6. Martonosi, A. N., 1984, Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle, Physiol. Rev. 64: 1240–1320.

    PubMed  CAS  Google Scholar 

  7. Smith, J. S., Coronado, R., and Meissner, G., 1985, Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels, Nature 316: 446–449.

    Article  PubMed  CAS  Google Scholar 

  8. Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82: 6352–6356.

    Article  PubMed  CAS  Google Scholar 

  9. Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle, Nature 316: 347–349.

    Article  PubMed  CAS  Google Scholar 

  10. Jenden, D. J., and Fairhurst, A. S., 1969, The pharmacology of ryanodine, Pharm. Rev. 21: 1–25.

    PubMed  CAS  Google Scholar 

  11. Jones, L. R., Besch, H. R., Jr., Sutko, J. L., and Willerson, J. T., 1979, Ryanodine-induced stimulation of net Ca2+ uptake by cardiac sarcoplasmic reticulum vesicles, J. Pharmacol. Exp. Ther. 209: 48–55.

    PubMed  CAS  Google Scholar 

  12. Fleischer, S., Ogunbunmi, E. M., Dixon, M. D., and Fleer, E. A. M., 1985, Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle, Proc. Natl. Acad. Sci. USA 82: 7256–7259.

    Article  PubMed  CAS  Google Scholar 

  13. Pessah, I. N., Waterhouse, A. L., and Casida, J. E., 1985, Solubilization and separation of Ca2+ -ATPase from the Ca2+-ryanodine receptor complex, Biochem. Biophys. Res. Commun. 128: 449–456.

    Article  PubMed  CAS  Google Scholar 

  14. Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P., 1987, Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ -permeable pore of the calcium release channel, J. Biol. Chem. 262: 16636–16643.

    PubMed  CAS  Google Scholar 

  15. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q.-Y., and Meissner, G., 1988, Purification and reconstitution of the calcium release channel from skeletal muscle, Nature 331: 315–319.

    Article  PubMed  CAS  Google Scholar 

  16. Hansford, R. G., and Lakatta, E. G., 1987, Ryanodine releases calcium from sarcoplasmic reticulum in calcium-tolerant rat cardiac myocytes, J. Physiol. (London) 390: 453–467.

    CAS  Google Scholar 

  17. Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum: Activation by Ca2+ and ATP and modulation by Mg2+, J. Gen. Physiol. 88: 573–588.

    Article  PubMed  CAS  Google Scholar 

  18. Armstrong, C. M., Bezanilla, F. M., and Horowicz, P., 1972, Twitches in the presence of ethylene glycol bis(β-aminoethyl ether)-Af, W-tetraacetic acid, Biochim. Biophys. Acta 267: 605–608.

    Article  PubMed  CAS  Google Scholar 

  19. Palade, P., 1987, Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. II. Releases involving a Ca2+ -induced Ca2+ release channel, J. Biol. Chem. 262: 6142–6148.

    PubMed  CAS  Google Scholar 

  20. Smith, J. S., Coronado, R., and Meissner, G., 1986, Single-channel calcium and barium currents of large and small conductance from sarcoplasmic reticulum, Biophys. J. 50: 921–928.

    Article  PubMed  CAS  Google Scholar 

  21. Suarez-Isla, B., Orozco, C., Heller, P. F., and Froehlich, J. P., 1986, Single calcium channels in native sarcoplasmic reticulum membranes from skeletal muscle, Proc. Natl. Acad. Sci. USA 83: 7741–7745.

    Article  PubMed  CAS  Google Scholar 

  22. Miyamoto, H., and Racker, E., 1982, Mechanism of calcium release from skeletal sarcoplasmic reticulum, J. Membrane Biol. 66: 193–201.

    Article  CAS  Google Scholar 

  23. Bianchi, C. P., and Bolton, T. C., 1967, Action of local anesthetics on coupling systems in muscle, J. Pharmacol. Exp. Ther. 157: 388–405.

    PubMed  CAS  Google Scholar 

  24. Endo, M., Tanaka, M., and Ogawa, Y., 1970, Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibers, Nature 228: 34–36.

    Article  PubMed  CAS  Google Scholar 

  25. Volpe, P., Salviati, G., and Chu, A., 1986, Calcium-gated calcium channels in sarcoplasmic reticulum of rabbit skinned skeletal muscle fibers, J. Gen. Physiol. 87: 289–303.

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell, R. D., Palade, P., and Fleischer, S., 1983, Purification of morphologically intact triad structures from skeletal muscle, J. Cell. Biol. 96: 1008–1016.

    Article  PubMed  CAS  Google Scholar 

  27. Palade, P., 1987, Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. I. Use of pyrophosphate to study caffeine-induced Ca2+ release, J. Biol. Chem. 262: 6135–6141.

    PubMed  CAS  Google Scholar 

  28. Palade, P., Mitchell, R. D., and Fleischer, S., 1983, Spontaneous calcium release from sarcoplasmic reticulum: General description and effects of calcium, J. Biol. Chem. 258: 8098–8107.

    PubMed  CAS  Google Scholar 

  29. Palade, P., 1987, Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+ -induced Ca2+ release by organic polyamines, J. Biol. Chem. 262: 6149–6154.

    PubMed  CAS  Google Scholar 

  30. Nakamura, Y., and Schwartz, A., 1972, The influence of hydrogen ion concentration on calcium binding and release by skeletal muscle sarcoplasmic reticulum, J. Gen. Physiol. 59: 22–32.

    Article  Google Scholar 

  31. Kasai, M., and Miyamoto, H., 1973, Depolarization-induced calcium release from sarcoplasmic reticulum membrane fragments by changing ionic environments, FEBS Lett. 34: 299–301.

    Article  PubMed  CAS  Google Scholar 

  32. Abramson, J. J., Trimm, J. L., Weden, L., and Salama, G., 1983, Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle, Proc. Natl. Acad. Sci. USA 80: 1526–1530.

    Article  PubMed  CAS  Google Scholar 

  33. Lodhi, S., Weiner, N. D., and Schacht, J., 1976, Interactions of neomycin and calcium in synaptosomal membranes and polyphosphoinositide monolayers, Biochim. Biophys. Acta 426: 781–785.

    Article  PubMed  CAS  Google Scholar 

  34. Hille, B., and Campbell, D. T., 1976, An improved vaseline gap voltage clamp for skeletal muscle fibers, J. Gen. Physiol. 67: 265–293.

    Article  PubMed  CAS  Google Scholar 

  35. Heiny, J. A., and Vergara, J., 1982, Optical signals from surface and T-system membranes in skeletal muscle fibers. Experiments with the Potentiometrie dye NK2367, J. Gen. Physiol. 80: 203–230.

    Article  PubMed  CAS  Google Scholar 

  36. Almers, W., 1977, Local anesthetics and excitation-contraction coupling in skeletal muscle: Effects on a Ca2+ channel, Biophys. J. 18: 355–357.

    Article  PubMed  CAS  Google Scholar 

  37. Kovacs, L., Rios, E., and Schneider, M. F., 1979, Calcium transients and intramembrane charge movement in skeletal muscle fibers, Nature 279: 391–396.

    Article  PubMed  CAS  Google Scholar 

  38. Palade, P., and Vergara, J., 1982, Arsenazo III and antipyrylazo III calcium transients in single skeletal muscle fibers, J. Gen. Physiol. 79: 679–707.

    Article  PubMed  CAS  Google Scholar 

  39. Volpe, P., Bravin, M., Zorzato, F., and Margreth, A., 1988, Isolation of terminal cisternae of frog skeletal muscle: Calcium storage and release properties, J. Biol. Chem. 263: 9901–9908.

    PubMed  CAS  Google Scholar 

  40. Kovacs, L., and Szucs, G., 1983, Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibers of the frog, J. Physiol. (London) 341: 559–578.

    CAS  Google Scholar 

  41. Delay, M., Ribalet, B., and Vergara, J., 1986, Caffeine potentiation of calcium release in frog skeletal muscle fibers, J. Physiol. (London) 375: 535–559.

    CAS  Google Scholar 

  42. Alvarez-Leefmans, F. J., Gamino, S. M., Giraldez, F., and Gonzales-Serratos, H., 1986, Intracellular free magnesium in frog skeletal muscle fibers measured with ion-selective microelectrodes, J. Physiol. (London) 378: 461–483.

    CAS  Google Scholar 

  43. Suarez-Isla, B., Irribarra, V., Bull, R., Oberhauser, A., Larralde, L., Jaimovich, E., and Hidalgo, C., 1988, Inositol 1,4,5-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum (SR) membranes, Biophys. J. 53: 467a.

    Google Scholar 

  44. Stein, P., and Palade, P., 1988, Sarcoballs: Direct access to sarcoplasmic reticulum Ca2+-channels in skinned frog muscle fibers, Biophys. J. 53: 455a; and 54: 357–363.

    Google Scholar 

  45. Rios, E., and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325: 717–720.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Palade, P., Brunder, D., Dettbarn, C., Stein, P. (1990). A Pharmacological Approach to the Physiological Mechanism of Excitation-Contraction Coupling. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics