Skip to main content

Role of Slow Inward Calcium Current in Excitation-Contraction Coupling

  • Chapter
Transduction in Biological Systems

Abstract

The role of external calcium in the process of excitation-contraction coupling of skeletal muscle fibers had been investigated extensively. Removal of external calcium has been shown to not prevent the contractile activation, but it does have distinct effects on contracture amplitude and duration and on the voltage-dependence of contractile inactivation.(1–5) Furthermore, it has been demonstrated recently that the magnitude and time course of myoplasmic calcium transients elicited by membrane depolarization depend strongly on extracellular calcium.(6)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almers, W., Fink, R., and Palade, P. T., 1981, Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization, J. Physiol. 312: 177–207.

    PubMed  CAS  Google Scholar 

  2. Luttgau, H. C., and Spiecker, W., 1979, The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibers of the frog, J. Physiol. 296: 411–429.

    PubMed  CAS  Google Scholar 

  3. Cota, G., and Stefani, E., 1981, Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibers, J. Physiol. 317: 303–316.

    PubMed  CAS  Google Scholar 

  4. Graf, F., and Schatzmann, H. J., 1984, Some effects of removal of external calcium on pig striated muscle. J. Physiol., 349: 1–13.

    PubMed  CAS  Google Scholar 

  5. Bolanos, P., Caputo, C., and Velaz, L., 1986, Effects of calcium, barium, and lanthanum on depolarization-contraction coupling in skeletal muscle fibers of Rana pipiens, J. Physiol. 370: 39–60.

    CAS  Google Scholar 

  6. Brum, G., Rios, E., and Stefani, E., 1988, Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibers, J. Physiol. 398: 441–473.

    PubMed  CAS  Google Scholar 

  7. Sanchez, J. A., and Stefani, E., 1978, Inward Ca2+ current in twitch muscle fibers of the frog, J. Physiol. 283: 197–209.

    PubMed  CAS  Google Scholar 

  8. Potreau, D., and Raymond, G., 1980, Calcium-dependent electrical activity and contraction of voltage-clamped frog single muscle fibers, J. Physiol. 307: 9–22.

    PubMed  CAS  Google Scholar 

  9. Caputo, C., 1981, Nickel substitution for calcium and the time course of potassium contractures of single muscle fibers, J. Muse. Res. Cell. Motility 2: 167–182.

    Article  CAS  Google Scholar 

  10. Lorkovic, H., and Rudel, R., 1983, Influence of divalent cations on potassium contracture duration in frog muscle fibers, Pflüg. Arch. 398: 114–119.

    Article  CAS  Google Scholar 

  11. Brum, G., Stefani, E., and Rios, E., 1987, Simultaneous measurements of Ca2+ currents and intracellular Ca2+ concentrations in single skeletal muscle fibers of the frog, Can. J. Physiol. Pharmacol. 65: 681–685.

    Article  PubMed  CAS  Google Scholar 

  12. Ildefonse, M., Jacquemond, V., Rougier, O., Renaud, J. F., Fosset, M., and Lazdunski, M., 1985, Excitation-contraction coupling in skeletal muscle: Evidence for a role of slow Ca2+ -channels using Ca2+-channel activators and inhibitors in the dihydropyridine series, Biochem. Biophys. Res. Commun. 129: 904–909.

    Article  PubMed  CAS  Google Scholar 

  13. Rakowski, R. F., Olszewska, E., and Paxson, C., 1987, High-affinity effect of nifedipine on K contracture in skeletal muscle suggests a role for calcium channels in excitation-contraction coupling, Biophys. J. 51: 550a.

    Google Scholar 

  14. Rios, E., and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature 325: 717–720.

    Article  PubMed  CAS  Google Scholar 

  15. Gamboa-Aldeco, R., Huerta, M., and Stefani, E., 1988, Effect of Ca2+ -channel blockers on K+ contractures in twitch fibers of the frog (Rana pipiens), J. Physiol. 397: 389–399.

    PubMed  CAS  Google Scholar 

  16. Jacquemond, V., and Rougier, O., 1988, Nifedipine and Bay K inhibit contraction independently from their action on calcium channels, Biochem. Biophys. Res. Commun. 152: 1002–1007.

    Article  PubMed  CAS  Google Scholar 

  17. Lamb, G. D., and Walsh, T., 1987, Calcium currents, charge movement, and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit, J. Physiol. 393: 595–617.

    PubMed  CAS  Google Scholar 

  18. Brum, G., Fitts, R., Pizarro, G., and Rios, E., 1988, Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling, J. Physiol. 398: 475–505.

    PubMed  CAS  Google Scholar 

  19. Caille, J., Ildefonse, M., and Rougier, O., 1978, Existence of a sodium current in the tubular membrane of frog twitch muscle fiber: Its possible role in the activation of contraction, Pflüg. Arch. 379: 117–119.

    Google Scholar 

  20. Nerbonne, J. M., Richard, S., and Nargeot, J., 1985, Ca2+ -channels are unblocked within a few milliseconds after photoconversion of nifedipine, J. Mol. Cell. Cardiol. 17: 511–515.

    Article  PubMed  CAS  Google Scholar 

  21. Raymond, G., and Potreau, D., 1981, Effets des anesthesiques locaux (procaine, tetracaine) sur la permebilitecalcique lente et la contraction de la fibre musculaire squelettique de grenouille, C. r. hebd. Seanc. Acad. Sci. Paris III 292: 637–640.

    CAS  Google Scholar 

  22. Gonzalez-Serratos, H., Valle Aguilera, R., Lathrop, D. A., and Del Carmen Garcia, M., 1982, Slow inward Ca currents have no obvious role in muscle excitation-contraction coupling, Nature 298: 292–294.

    Article  PubMed  CAS  Google Scholar 

  23. Lorkovic, 1967, Effects of divalent cations on frog twitch muscles, Am. J. Physiol. 212: 623–628.

    PubMed  CAS  Google Scholar 

  24. Aimers, W., Fink, R., and Palade, P. T., 1981, Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization, J. Physiol. 312: 177–207.

    Google Scholar 

  25. Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in skeletal muscle, Proc. Natl. Acad. Sci. USA 82: 6352–6356.

    Article  PubMed  CAS  Google Scholar 

  26. Lamb, G. D., 1986, Components of charge movement in rabbit skeletal muscle: The effect of tetracaine and nifedipine, J. Physiol. 376: 85–100.

    PubMed  CAS  Google Scholar 

  27. Tsien, R. W., 1987, Calcium currents in heart cells and neurons, in: Neuromodulation (L. K. Kaczmarek and I. B. Levitan, Eds.) pp. 206–242, Oxford University Press, Oxford.

    Google Scholar 

  28. Vassort, G., and Rougier, O., 1972, Membrane potential and slow inward current dependence of frog cardiac mechanical activity, Pflüg. Arch. 331: 191–203.

    Article  CAS  Google Scholar 

  29. Fabiato, A., and Fabiato, F., 1977, Calcium release from the sarcoplasmic reticulum, Circ. Res. 40: 119–129.

    PubMed  CAS  Google Scholar 

  30. Hodgkin, A. L., and Horowicz, P., 1960, Potassium contractures in single muscle fibers, J. Physiol. 153: 386–403.

    PubMed  CAS  Google Scholar 

  31. Fosset, M., Jaimovich, E., Delpont, E., and Lazdunski, M., 1983, [3H]Nitrendipine receptors in skeletal muscle: Properties and preferential localization in transverse tubules, J. Biol. Chem. 258: 6086–6092.

    PubMed  CAS  Google Scholar 

  32. Schneider, M. F., and Chandler, W. K., 1973, Voltage-dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling, Nature 242: 244–246.

    Article  PubMed  CAS  Google Scholar 

  33. Mathias, R. T., Levis, R. A., and Eisenberg, R. S., 1980, Electrical models of excitation-contraction coupling and charge movement in skeletal muscle, J. Gen. Physiol. 76: 1–31.

    Article  PubMed  CAS  Google Scholar 

  34. Caille, J., Ildefonse, M., Roy, G., and Rougier, O., 1981, Surface and tubular sodium currents in frog twitch muscle fiber: Implication in excitation-contraction coupling, in: Molecular Aspects of Muscle Function (E. Varga, A. Kover, T. Kovacs, and L. Kovacs, Eds.), pp. 389–409, Pergamon, Oxford, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Jacquemond, V., Rougier, O. (1990). Role of Slow Inward Calcium Current in Excitation-Contraction Coupling. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics