Skip to main content

Hepatocyte Gap Junctions: Metabolic Regulation and Possible Role in Liver Metabolism

  • Chapter
Transduction in Biological Systems

Abstract

Over the past three decades, it has become clear that cells of most tissues communicate through specialized intercellular structures called gap junctions(1) which have also been termed nexus or maculae communicantes. One of the most exhaustively studied examples of this type of intercellular communication is that between hepatocytes, which is emphasized in this chapter. In electron micrographs of thin sections, gap junctions are seen as specialized regions of contact where apposed plasma membranes of adjacent cells are separated by a gap of 2–3 nm (Fig. 1A). In electron micrographs of freeze fracture replicas, hepatocyte gap junctions show arrays or plaques of 8.5–9.5 nm intramembrane particles cleaving with the P face (Fig. 1B); complementary pits appear on the E face. In the center of the fractured particles a dimple is commonly discernible that presumably represents the central aqueous lumen of the gap junction channel. Channels of isolated gap junctions can form a regular hexagonal array, and application of Fourier transform techniques reveal substructure in which each hemichannel or con-nexon is made up of six subunits.(2) The hemichannels or connexons crossing each plasma membrane protrude into the extracellular gap, where they connect to those in the other half of the junction to form the complete aqueous channel(3) (Fig. 1C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, M. V. L., and Spray, D. C., (Eds.), 1985, Gap Junctions, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  2. Unwin, P. N. T., and Ennis, P. D., 1984, Two configurations of the channel-forming membrane protein, Nature (London) 307: 609–613.

    Article  CAS  Google Scholar 

  3. Makowski, L., Caspar, D. L. D., Phillips, W. C., and Goodenough, D. A., 1984, Gap junction structure. V. Structural chemistry inferred from x-ray diffraction measurements on sucrose accessibility and trypsin susceptibility, J. Mol. Biol. 174: 449–481.

    Article  PubMed  CAS  Google Scholar 

  4. Hertzberg, E. L., 1984, A detergent-independent procedure for the isolation from rat liver, J. Biol. Chem. 259: 9936–9943.

    PubMed  CAS  Google Scholar 

  5. Paul, D., 1986, Molecular cloning of cDNA for rat liver gap junction protein, J. Cell Biol. 103: 123–134.

    Article  PubMed  CAS  Google Scholar 

  6. Beyer, E. C., Paul, D., and Goodenough, D. A., 1987, Connexin 43: A protein from rat heart homologous to gap junction protein from liver, J. Cell Biol. 105: 2621–2629.

    Article  PubMed  CAS  Google Scholar 

  7. Nicholson, B. J., and Zhang, J-T., 1988, Multiple protein components in a single gap junction: Cloning of a second hepatic gap junction protein (M r 21,000), in: Modem Cell Biology, Vol. 7 (E. L. Hertzenberg and R. G. Johnson, Eds.), Alan R. Liss, New York, pp. 207–218.

    Google Scholar 

  8. Nicholson, B. J., Dermietzel, R., Teplow, D. B., Traub, O., Willecke, K., and Revel, J.-P., 1987, Two homologous protein components of hepatic gap junctions, Nature 329: 732–734.

    Article  PubMed  CAS  Google Scholar 

  9. Exton, J. H., Cherington, A. D., Blackmore, P. F., Dehaye, J.-P., Strickland, W. G., Jordan, J. E., and Chisman, T. D., 1986, Hormonal regulation of liver glycogen metabolism, in: Protein Phosphorylation, Cold Spring Harbor Conferences on Cell Proliferation, Vol. 8. (O. M. Rosen and E. G. Krebs, Eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 503–528.

    Google Scholar 

  10. Sáez, J. C., Spray, D. C., Nairn, A. C., Hertzberg, E. L., Greengard, P., and Bennett, M. V. L., 1986, cAMP increases junctional conductance and stimulates phosphorylation of the 27 kDa principal gap junction polypeptide, Proc. Natl. Acad. Sci. USA 83: 2473–2477.

    Google Scholar 

  11. Sáez, J. C., Nairn, A. C., Spray, D. C., Hertzberg, E. L., Greengard, P., and Bennett, M. V. L., 1987, The major 27 kD gap junction protein is phosphorylated by cAMP dependent and Ca2+ -dependent protein kinases, Soc. Neurose. 13: 1133.

    Google Scholar 

  12. Yamasaki, H., and Mesnil, M., 1987, Cellular communication in cell transformation, in: Biochemical Mechanisms and Regulation of Intercellular Communication (M. A. Mehlman, Ed.), Princeton Scientific Publication Co., Inc., Princeton, N.J., pp. 181–207.

    Google Scholar 

  13. Enamoto, T., Martel, N., Kanno, Y, and Yamasaki, H., 1984, Inhibition of cell communication between Balb/c 3T3 cells by tumor promoters and protection by cAMP, J. Cell. Physiol. 121: 323–333.

    Article  Google Scholar 

  14. Sáez, J. C., Nairn, A. C., Czernick, A. J., Spray, D. C., Hertzberg, E. L., Greengard, P., and Bennett, M. V. L., 1990, Phosphorylation of connexin 32, the main hepatocyte gap junction protein, by cAMP-dependent protein kinase, protein kinase-C and Ca2+ /calmodulin-dependent protein kinase. (Submitted for publication.)

    Google Scholar 

  15. Yada, T., Rose, B., and Loewenstein, W. R., 1985, Diacylglycerol down regulates membrane permeability: TMB-8 blocks this effect, J. Membr. Biol. 88: 217–232.

    Article  PubMed  CAS  Google Scholar 

  16. Sâez, J. C., Gregory, W. A., Dermietzel, R., Hertzberg, E. L., Watanabe, T., Reid, L. M., Bennett, M. V. L., and Spray, D.C., 1989, cAMP extends the functional lifespan of gap junctions in cultured rat hepatocytes, Am. J. Physiol. 257: C1-C11.

    PubMed  Google Scholar 

  17. Spray, D. C., Fujita, Y., Sáez, J. C., Choi, H., Rosenberg, L. C., and Reid, L. M., 1987, Glycosaminoglycans and proteoglycans induce gap junction synthesis and function in primary liver cultures, J. Cell Biol. 105: 541–551.

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe, T., Sáez, J. C., Spray, D. C., and Reid, L. M., 1987, Heparin potentiates the regulation by hormones and growth factors of liver-specific mRNA expression in cultured hepatocytes, J. Cell Biol. 105: 356.

    Google Scholar 

  19. Sâez, J. C., Connor, J. A., Spray, D. C., and Bennett, M. V. L., 1989, Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-triphosphate, and to calcium ions, Proc. Natl. Acad. Sci. USA 86: 2708–2712.

    Article  PubMed  Google Scholar 

  20. Graf, J., and Petersen, O. H., 1978, Cell membrane potential and resistance in liver, J. Physiol. 284: 105–126.

    PubMed  CAS  Google Scholar 

  21. Marchmount, R. J., and Houlay, M. D., 1980, Insulin triggers cAMP-dependent activation and phosphorylation of a plasma membrane cAMP phosphodiesterase, Nature (London) 286: 904–906.

    Article  Google Scholar 

  22. Sâez, J. C., Bennett, M. V. L., and Spray, D. C., 1987, Carbon tetrachloride at hepatotoxic levels blocks reversibly gap junctions between rat hepatocytes, Science 236: 967–969.

    Article  PubMed  Google Scholar 

  23. Exton, J. H., 1980, Mechanisms involved in a-adrenergic phenomena: Role of calcium ions in actions of catecholamines in liver and other tissues, Am. J. Physiol. 238: E3-E12.

    PubMed  CAS  Google Scholar 

  24. Garrison, J. C., and Borland, M. K., 1979, Regulation of mitochondrial pyruvate carboxylation and gluconeogenesis in rat hepatocytes via an a-adrenergic adenosine 3′,5′-monophosphate-independent mechanisms, J. Biol. Chem. 254: 1129–1133.

    PubMed  CAS  Google Scholar 

  25. Wakelam, M. J. O., Murphy, G. J., Hruby, V. J., and Houslay, M. D., 1986, Activation of the two signal-transduction systems in hepatocytes by glucagon, Nature (London) 323: 68–71.

    Article  CAS  Google Scholar 

  26. Phillips, M. J., Oshio, C., Miyairi, M., Watanabe, S., and Smith, C. R., 1983, What is actin doing in the liver? Hepatology 3: 433–436.

    Article  PubMed  CAS  Google Scholar 

  27. Kaminski, D. L., Deshpande, Y. G., and Beinfeld, M. C., 1988, Role of glucagon in cholecystokinin-stimulated bile flow in dogs, Am. J. Physiol. 254: G864–G869.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Sáez, J.C., Bennett, M.V.L., Spray, D.C. (1990). Hepatocyte Gap Junctions: Metabolic Regulation and Possible Role in Liver Metabolism. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics