Skip to main content

Synexin-Driven Membrane Fusion: Molecular Basis for Exocytosis

  • Chapter
Transduction in Biological Systems

Abstract

Secretion by exocytosis involves fusion of a secretory vesicle membrane with the plasma membrane of the secreting cell. In many endocrine cells, including chromaffin cells and pancreatic β-cells, such simple exocytosis is followed by contact and fusion of more deeply situated secretory vesicles with the initially fused secretory vesicle membranes. The latter process is called compound exocytosis, and presumably allows for additional secretion without moving secretory granules long distances through the cytoskeleton to reach the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1978, Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules, Biol. Chem. 253: 2858–2866.

    CAS  Google Scholar 

  2. Scott, J. H., Keiner, K. L., and Pollard, H. B., 1985, Purification of synexin by pH step elution from chromatofocusing media in the absence of amphols, Anal. Biochem. 149: 163–165.

    Article  PubMed  CAS  Google Scholar 

  3. Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189: 347–358.

    Article  PubMed  CAS  Google Scholar 

  4. Morris, S. J., Hughes, J. M. X., and Whittaker, V. P., 1982, Purification and mode of action of synexin: A protein-enhancing calcium-induced membrane aggregation, J. Neurochem. 39: 529–536.

    Article  PubMed  CAS  Google Scholar 

  5. Simon, S. M., and Llinas, R. R., 1985, Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release, Biophys. J. 48: 485–489.

    Article  PubMed  CAS  Google Scholar 

  6. Tsien, R. W., Hess, P., McCleskey, E. W., and Rosenberg, R. L., 1987, Mechanisms of selectivity, permeation, and block, Ann. Rev. Biophys. Biophys. Chem. 16: 265–290.

    Article  CAS  Google Scholar 

  7. Creutz, C. E., and Sterner, D. C., 1983, Calcium dependence of the binding of synexin to isolated chromaffin granules, Bioch. Biophys. Res. Commun. 114: 355–364.

    Article  CAS  Google Scholar 

  8. Creutz, C. E., 1981, Cw-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin, J. Cell Biol. 91: 247–256.

    Article  PubMed  CAS  Google Scholar 

  9. Creutz, C. E., and Pollard, H. B., 1982, Development of a cell-free model for compound exocytosis using components of the chromaffin cell, J. Auton. Nerv. Syst. 7: 13–18.

    Article  Google Scholar 

  10. Hotchkiss, A., Pollard, H. B., Scott, J., and Axelrod, J., 1981, Release of arachidonic acid from adrenal chromaffin cell cultures during secretion of epinephrine, Fed. Proc. 40: 256.

    Google Scholar 

  11. Frye, R. A., and Holz, R. W., 1984, The relationship between arachidonic acid release and catecholamine secretion from culture bovine adrenal chromaffin cells, J. Neurochem. 43: 146–150.

    Article  PubMed  CAS  Google Scholar 

  12. Pollard, H. B., Creutz, C. E., Fowler, V. M., Scott, J. H., and Pazoles, C. J., 1982, Calcium-dependent regulation of chromaffin granule movement, membrane contact, and fusion during exocytosis, Cold Spring Harbor Symp. Quant. Biol. 46: 819–834.

    Article  PubMed  Google Scholar 

  13. Ornberg, R. L., Duong, L. T., and Pollard, H. B., 1986, Intergranular vesicles: New organelles in the secretory granules of adrenal chromaffin cells, Cell and Tissues Res. 245: 547–553.

    CAS  Google Scholar 

  14. Hong, K., Duzgunes, N., and Papahadjopoulos, D., 1981, Role of synexin in membrane fusion: Enhancement of calcium-dependent fusion of phospholipid vesicles, J. Biol. Chem. 256: 3641–3644.

    PubMed  CAS  Google Scholar 

  15. Hong, K., Duzgunes, N., Ekert, R., and Papahadjopoulos, D., 1982, Synexin facilitates fusion of specific phospholipid vesicles at divalent cation concentrations found intracellularly, Prod. Nat. Acad. Sci. USA 79: 4642–4644.

    Article  CAS  Google Scholar 

  16. Hong, K., Ekert, R., Bentz, J., Nir, S., and Papahadjopoulos, D., 1983, Kinetics of synexin-facilitated membrane fusion, Biophys. J. 41: 31a.

    Google Scholar 

  17. Stutzin, A., 1986, A fluorescence assay for monitoring and analyzing fusion of biological membranes vesicles in vitro, FEBS Lett. 197: 274–280.

    Article  PubMed  CAS  Google Scholar 

  18. Stutzin, A., Cabantchik, I., Lelkes, P. I., and Pollard, H. B., 1987, Synexin-mediated fusion of bovine chromaffin granule ghosts: Mechanism of pH dependence, Biophys. Biochem. Acta 905: 205–212.

    Article  CAS  Google Scholar 

  19. Nir, S., Stutzin, A., and Pollard, H. B., 1987, Effect of synexin on aggregation and fusion of chromaffin granule ghosts at pH 6, Biochemistry, Biophys. Biochem. Acta 903: 309–318.

    Article  CAS  Google Scholar 

  20. Hong, K., Duzgunes, N., and Papahadjopoulos, D., 1982, Modulation membrane fusion by calcium-binding proteins, Biophys. J. 37: 297–306.

    Article  PubMed  CAS  Google Scholar 

  21. Pollard, H. B., Ornberg, R., Levine, M., Heldman, E., Morita, K., Keiner, K., Lelkes, P., Brocklehurst, K., Forsberg, E., Duong, L., Levine, R., and Youdim, M. B. H., 1985, Hormone packaging and secretion by exocytosis: A view from the chromaffin cell, Vitamins and Hormones (G. Aurbach, ed.), 42: 109–196.

    Article  PubMed  CAS  Google Scholar 

  22. Scott, H. H., Creutz, C. E., Pollard, H. B., and Ornberg, R. O., 1985, Synexin binds in a calcium-dependent fashion to oriented chromaffin cell plasma membranes, FEBS Lett. 180: 17–23.

    Article  PubMed  CAS  Google Scholar 

  23. Burns, A. L., Magendzo, K., Shirvan, A., Srivastava, J., Rojas, E., Alijani, M. R., and Pollard, H. B., 1989, Calcium channel activity of purified human synexin and structure of the human synexin gene, Proc. Nat. Acad. Sci. USA 86: 3798–3802.

    Article  PubMed  CAS  Google Scholar 

  24. Wallner, B. P., Mattaliano, R. J., Hession, C., Cate, R. L., Tizard, R., Sinclair, L. K., Foeller, C., Chow, E. P., Browning, J. L., Ramachandrau, K. L., and Pepinsky, R. B., 1986, Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity, Nature 320: 77–81.

    Article  PubMed  CAS  Google Scholar 

  25. Schlaepfer, D. D., Mehlman, T., Burgess, W. H., and Haigler, H. T., 1987, Structural and functional characterization of endonexin II, a calcium- and phospholipid-binding protein, Biophys. J. 48: 485–492.

    Google Scholar 

  26. Kaplan, R., Jaye, M., Burgess, W. H., Schlaepfer, D. D., and Haigler, H. T., 1988, Cloning and expression of cDNA for endonexin II, a Ca2+ and phospholipid-binding protein, J. Biol. Chem. (in press).

    Google Scholar 

  27. Glenney, J. R., 1986, Two related but distinct forms of the M r 36,000 tyrosine kinase substrate (calpactin) that interact with phospholipid and acting in a Ca2+-dependent manner, Proc. Nat. Acad. Sci. USA 83: 4258–4262.

    Article  PubMed  CAS  Google Scholar 

  28. Huang, K-S., Wallner, B. P., Mattaliano, R. J., Tizard, R., Burne, C., Frey, A., Hession, C., McGray, P., Sinclair, L. K., Chow, E. P., Browning, J. L., Ramachandran, K. L., Tang, J., Smart, J. E., and Pepinsky, R. B., 1986, Two human 35-kD inhibitors of phospholipase are related to substrate of pp60V-src and of the epidermal growth factor receptor kinase, Cell 46: 191–199.

    Article  PubMed  CAS  Google Scholar 

  29. Kirstensen, T, Saris, C. J. M., Hunter, T, Hicks, L. J., Noonan, D. J., Glenney, J. R., Jr., and Tack, B. F., 1986, Primary structure of bovine calpactin I heavy chain (p36), a major cellular substrate for retroviral protein-tirosine kinases: Homology with the human phospholipase A2 inhibitor lipocortin, Biochem. 25: 4497–4503.

    Article  Google Scholar 

  30. Saris, C. J. M., Tack, B. F., Kristensen, T., Glenney, J. R., Jr., and Hunter, T, 1986, The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multi-domain protein with internal repeats, Cell 46: 201–212.

    Article  PubMed  CAS  Google Scholar 

  31. Weber, K., Johnsson, N., Plessmann, U., Van, P. N., Soling, H-D., Ampe, C., and Vandekerckhove, J., 1987, The amino acid sequence of protein II and its phosphorylation site for protein kinase C: The domain structure (of) Ca2+-modulated lipid-binding proteins, EMBO J. 6: 1599–1604.

    PubMed  CAS  Google Scholar 

  32. Sudhof, T. C., Slaughter, C. A., Leznicki, I., Barjon, P., and Reynolds, G. A., 1988, Human 67-kDa calelectrin contains a duplication of four repeats found in 35-kDa lipocortins, Proc. Nat. Acad. Sci. USA 85: 664–668.

    Article  PubMed  CAS  Google Scholar 

  33. Taylor, W. R., and Geisow, M. J., 1987, Predicted structure for the calcium-dependent membrane-binding proteins p35, p36, and p32, Prot. Engin. 1(3): 183–187.

    Article  CAS  Google Scholar 

  34. Rojas, E., and Tobias, J. M., 1965, Membrane model: Association of inorganic cations with phospholipid monolayers, Biochem. Biophys. Acta 94: 394–404.

    Article  PubMed  CAS  Google Scholar 

  35. Santis, M., and Rojas, E., 1969, On the chemistry of ion exchange in monomolecular layers of lipids, Biochim. Biophys. Acta 193: 319–332.

    Article  PubMed  CAS  Google Scholar 

  36. Davies, J. T., and Rideal, E. K., 1961, Interfacial phenomena, Academic, New York.

    Google Scholar 

  37. Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1979, Self-association of synexin in the presence of calcium: Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates, J. Biol. Chem. 254: 553–558.

    PubMed  CAS  Google Scholar 

  38. Rojas, E., and Pollard, H. B., 1987, Membrane capacity measurements suggest a calcium-dependent insertion of synexin into phosphatidylserine bilayers, FEBS Lett. 217: 25–31.

    Article  PubMed  CAS  Google Scholar 

  39. Debye, P., 1929, Polar Molecules. Dover, New York.

    Google Scholar 

  40. Rojas, E., 1976, Gating mechanism for activation of the sodium conductance in nerve membranes, Cold Spring Harbor Symp. Quant. Biol. XL: 305–320.

    Article  Google Scholar 

  41. Pollard, H. B., and Rojas, E., 1988, Calcium-activated synexin forms highly selective, voltage-gated calcium channels in phosphatidylserine bilayer membranes, Proc. Nat. Acad. Sci. USA 85: 2974–2978.

    Article  PubMed  CAS  Google Scholar 

  42. Pollard, H. B., Creutz, C. E., and Pazoles, C. J., 1981, Mechanisms of calcium action and hormone release during exocytosis, Rec. Prog, in Horm. Res. R. O. Greep, ed. Academic, New York 37: 299–322.

    CAS  Google Scholar 

  43. Pollard, H. B., Scott, J. H., and Creutz, C. E., 1983, Inhibition of synexin activity and exocytosis from chromaffin cells by phenothiazine drugs, Biochem. Biophys. Res. Comm. 113: 908–915.

    Article  PubMed  CAS  Google Scholar 

  44. Miller, R. J., 1987, Multiple calcium channels and normal function. Science 235: 46–52.

    Article  PubMed  CAS  Google Scholar 

  45. Pollard, H. B., Rojas, E., and Bums, A. L., 1987, Synexin and chromaffin granule membrane fusion: A novel “hydrophobic bridge” hypothesis for driving and directing the fusion process, Ann. New York Acad. Sci. 493: 524–551.

    Article  CAS  Google Scholar 

  46. Pollard, H. B., Rojas, E., Bums, A. L., and Parra, C., 1988, Synexin calcium and the hydrophobic bridge hypothesis for membrane fusion, in: Molecular Mechanisms of Membrane Fusion (S. Ohki, D. Doyle, T. Flanagan, S. W. Hui, and E. Mayhew, Eds.) Plenum, New York, pp. 341–355.

    Chapter  Google Scholar 

  47. Blumenthal, R., 1987, Membrane fusion, Currents Topics in Membrane and Transport 253: 2858–2866.

    Google Scholar 

  48. Drust, D. S., and Creutz, C. E., 1988, Aggregation of chromaffin granules by calpactin at micro-molar levels of calcium, Nature 331: 88–91.

    Article  PubMed  CAS  Google Scholar 

  49. Sudhof, T. C., Ebbecke, M., Walker, J. H., Fritsche, U., and Boustead, C., 1984, Isolation of mammalian calelectrins: A new class of ubiquitous Ca2+ -regulated proteins, Biochemistry 23: 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  50. Pollard, H. B., Bums, A. L., and Rojas, E., 1988, A molecular basis for synexin-driven calcium-dependent membrane fusion, J. Exptl. Biology 139: 267–286.

    CAS  Google Scholar 

  51. Sussman, K. E., Pollard, H. B., Leitner, J. W., Nesher, R., Adler, J., and Cerasi, E., 1983, Differential Control of insulin secretion and somatostation receptor recruitment in isolated islets, Biochem. J., 214:225–230.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Rojas, E., Burns, A.L., Pollard, H.B. (1990). Synexin-Driven Membrane Fusion: Molecular Basis for Exocytosis. In: Hidalgo, C., Bacigalupo, J., Jaimovich, E., Vergara, J. (eds) Transduction in Biological Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5736-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5736-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5738-4

  • Online ISBN: 978-1-4684-5736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics