Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 214))

Abstract

Different emission processes based on fundamental excitations in low dimensional systems are discussed. Subband transitions in GaAs/GaA1As heterostructures and quantum wells provide a level system which can be tuned by technological parameters. For subband energies below the optical phonon energy weak subband emission has been observed by excitation through carrier heating and tunnel injection. The tunnel injection mechanisms and the requirements for a subband laser are discussed.

Ballistic electron transport in combination with a lateral periodic potential bears the possibility to obtain stimulated emission in a semiconductor analogous to the free electron laser. A first step into this direction is demonstrated by the observation of spontaneous emission from electrons moving ballistically over a sinusoidal grating in high mobility GaAs/GaA1As heterostructures. Two—dimensional plasma oscillations are also a candidate to generate coherent far infrared radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki, R. Tsu, IBM J. Res. Develop. 61 (1970).

    Google Scholar 

  2. L.C. West, S.J. Eglash, Appl. Phys. Lett. 46: 1153 (1985).

    Article  ADS  Google Scholar 

  3. B.F. Levine, A.Y. Cho, J. Walker, R.J. Mallik, D.A. Kleinmann, D.L. Sivco, Appl. Phys. Lett. 52: 1481 (1988).

    Article  ADS  Google Scholar 

  4. A.A. Andronov, I.V. Zverev, V.A. Kozlov, Yu.N. Nozdrin, S.A. Pavlov, V.N. Shastin, Sov. Phys.-JETP Lett. 40: 804 (1984).

    ADS  Google Scholar 

  5. S.Komiyama, N. Iizuka, Y. Akasaka, Appl. Phys. Lett. 47: 958 (1985).

    Article  ADS  Google Scholar 

  6. K. Unterrainer, M. Helm, E. Gornik, E.E. Haller, J. Leotin, Appl. Phys. Lett. 52: 564 (1988).

    Article  ADS  Google Scholar 

  7. R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5: 707 (1971).

    Google Scholar 

  8. Perng-fei Yuh, K.L. Wang, Appl. Phys. Lett 51: 1404 (1987).

    Google Scholar 

  9. Perng-fei Yuh, K.L. Wang, Phys. Rev. B37: 1328 (1988).

    ADS  Google Scholar 

  10. H.C. Liu, J. Appl. Phys. 63: 2856 (1988).

    Article  ADS  Google Scholar 

  11. E. Gornik, R. Schawarz, D.C. Tsui, A.C. Gossard, W. Wiegmann, Solid State Commun. 38: 541 (1981).

    Article  ADS  Google Scholar 

  12. M. Helm, E. Colas, P. England, F. DeRosa, S.J. Allen Jr., Appl. Phys. Lett. 53: 1714 (1988).

    Article  ADS  Google Scholar 

  13. F. Capasso, K. Mohammed, A.Y. Cho, Appl. Phys. Lett. 48: 478 (1986).

    Article  ADS  Google Scholar 

  14. M. Helm et al., preprint

    Google Scholar 

  15. A.F. Levi, J.R. Hayes, P.M. Platzmann, W. Wiegmann, Phys. Rev. Lett. 55:2071 (1985).

    Google Scholar 

  16. M. Heiblum, M.I. Nathan, D.C. Thomas, C.M. Knoedler, Phys. Rev. Lett. 55: 2200 (1985).

    Article  ADS  Google Scholar 

  17. V. Gruzinskis et al., Solid State Electron. 31: 345 (1988).

    Article  ADS  Google Scholar 

  18. A.M. Belyantsev et al., Solid State Electron. 31: 379 (1988).

    Article  ADS  Google Scholar 

  19. M. Botton, A. Ron, Appl. Phys. Lett. 54: 418 (1989).

    Article  ADS  Google Scholar 

  20. E. Gornik, R. Christanell, R. Lassnig, W. Beinstingl, K. Berthold, G. Weimann, Solid State Electron. 31: 751 (1988).

    Article  ADS  Google Scholar 

  21. R.A. Höpfel, E. Gornik, Surface Science 142: 375 (1984).

    Google Scholar 

  22. E. Gornik, D.C. Tsui, Phys. Rev. Lett. 37: 1425 (1976).

    Article  ADS  Google Scholar 

  23. E. Gornik, D.C. Tsui, Solid State Electron. 21: 139 (1978).

    Article  ADS  Google Scholar 

  24. A. Seilmeier, H.J. Hubner, G. Abstreiter, G. Weimann, W. Schlapp, Phys. Rev. Lett. 59: 1345 (1987).

    Article  ADS  Google Scholar 

  25. D.Y. Oberli, D.R. Wake, M.V. Klein, J. Klem, T. Henderson, H. Morkoc, Phys. Rev. Lett. 59: 696 (1987).

    Article  ADS  Google Scholar 

  26. S. Borenstain, J. Katz, Phys. Rev. B, preprint.

    Google Scholar 

  27. A. Grover, A. Yariv, J. Appl. Phys. 16: 121 (1978).

    Article  ADS  Google Scholar 

  28. E. Gornik, R.A. Höpfel, AEU 37: 213 (1983).

    Google Scholar 

  29. R.A. Höpfel, E. Gornik, A.C. Gossard, W. Wiegmann, Physica B 177 & 178: 646 (1983).

    Google Scholar 

  30. N. Okisu, Y. Sambe, T. Kobayshi, Appl. Phys. Lett. 48: 776 (1986).

    Article  ADS  Google Scholar 

  31. E. Gornik, W. Müller, F. Kohl, IEEE Trans. on Microwave Theory and Techniques MTT 22: 991 (1974).

    Article  ADS  Google Scholar 

  32. S.J. Smith, E.M. Purcell, Phys. Rev. 92: 1069 (1953).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Gornik, E. (1990). Emission Process in Quantum-Structures. In: Beaumont, S.P., Torres, C.M.S. (eds) Science and Engineering of One- and Zero-Dimensional Semiconductors. NATO ASI Series, vol 214. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5733-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5733-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5735-3

  • Online ISBN: 978-1-4684-5733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics