Skip to main content

Peptide Hormones, Cytosolic Calcium and Renal Epithelial Response

  • Chapter
Renal Eicosanoids

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 259))

Abstract

The response of renal cells to extracellular signals has recently attracted increasing experimental evaluation. The cellular response to a variety of peptide hormones, neurotransmitters and growth factors are fundamental to understanding how the signals mediated by circulatory substances, which interact with cell surface receptors, produce their effects intracellularly. The cellular responses to a wide variety of signal molecules are somewhat limited. Occupancy of receptors initiates the production of intracellular messengers including cAMP, cGMP and the second messenger molecules derived from phosphoinositides (1–3). The phosphoinositides constitute 5–8% of lipids in the cell membranes of eukaryotic cells and are essential for cell viability (4). These phosphoinositides are storage forms for the messenger molecules that transmit signals across the cell membrane and evoke responses to extracellular signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Nishizuka, Studies and perspectives of protein kinase C, Science 233:305–312 (1986).

    Article  PubMed  CAS  Google Scholar 

  2. M.J. Berridge and R.F. Irvine, Inositol trisphosphate, a novel second messenger in signal transduction, Nature (London) 312:315–321 (1984).

    Article  CAS  Google Scholar 

  3. P.N. Majerus, T.M. Connolly, H. Deckmyer, T.S. Ross, T.E. Bross, H. Ishii, V.S. Bansal, D.B. Wilson, The metabolism of phosphoinositide-derived messenger molecule, Science 234:1519–1526 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. J. Esko and C.R.H. Raetz, Mutants of Chinese hamster ovary cells with altered membrane phospholipid composition, J. Biol. Chem. 255:4474–4480 (1980).

    PubMed  CAS  Google Scholar 

  5. S. Shin, Y. Fujiwara, A. Wada, T. Takama, Y. Orita, T. Kamada, K. Tagawa, Angiotensin II-induced increase in inositol 1, 4, 5-trisphosphate in cultured rat mesangial cells: evidence by refined High Performance Liquid Chromatography, BBRC 142:70–77 (1987).

    PubMed  CAS  Google Scholar 

  6. J.E. Benabe, L.A. Spry, A.R. Morrison, Effects of angiotensin II on phosphatidylinositol and polyphosphatidylinositol turnover in rat kidney, J. Mol. Chem. 257:7430–7434 (1982).

    CAS  Google Scholar 

  7. J.A. Shayman and A.R. Morrison, Bradykinin-induced changes in phosphatidylinositol turnover in cultured rabbit papillary collecting tubule cells, J. Clin. Invest. 76:978–984 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. D. Portilla and A.R. Morrison, Bradykinin-induced changes in inositol trisphosphate mass in MDCK cells, BBRC 140:644–649 (1986).

    PubMed  CAS  Google Scholar 

  9. D.A. Troyer, J.I. Kreisberg, D.W. Schwertz, M. Venkatachalam, Effects of vasopressin on phosphoinositide and prostaglandin production in cultured mesangial cells.

    Google Scholar 

  10. K.A. Hruska, M. Goligorsky, J. Schoble, M. Tsutsumi, S. Westbrook, D. Moskowitz, Effects of parathyroid hormone on cytosolic calcium in renal proximal tubule primary cultures, Am. J. Physiol. 251:F188–F198 (1986).

    PubMed  CAS  Google Scholar 

  11. M.S. Goligorsky, D.J. Loftus, K.A. Hruska, Cytoplasmic calcium in individual proximal tubular cells in culture, Am. J. Physiol. 251:F938–F944 (1986).

    PubMed  CAS  Google Scholar 

  12. S.L. Hofmann and P.W. Majerus, Purification and properties of phosphatidylinositol specific phospholipase C from sheep seminal vesicular glands, J. Biol. Chem. 257:6461–6467 (1982).

    PubMed  CAS  Google Scholar 

  13. M.G. Low, R.C. Carroll, W.B. Weglicki, Multiple forms of phosphoinositide-specific phospholipase C of different relative molecular masses in animal tissue, Biochem. J. 221:813–820 (1984).

    CAS  Google Scholar 

  14. M.G. Low, R.C. Carroll, A.C. Cox, Characterization of multiple forms of phosphoinositide-specific phospholipase C purified from human platelets, Biochem. J. 237:139–145 (1986).

    CAS  Google Scholar 

  15. S. Cockcroft, The dependence on Ca2+ of the guanine-nucleo tide-activated polyphosphoinositide phosphodiesterase in neutrophil plasma membrane, Biochem. J. 240:503–507 (1986).

    PubMed  CAS  Google Scholar 

  16. S. Cockcroft, J.A. Taylor, Fluoroaluminates mimic guanosine 5′[γ-thio]-triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes, Biochem. J. 241:409–414 (1987).

    PubMed  CAS  Google Scholar 

  17. D.B. Wilson, T.E. Bross, S.L. Hoffmann, P.W. Majerus, Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes, J. Biol. Chem. 259:11718–11724 (1984).

    PubMed  CAS  Google Scholar 

  18. R.M. Dawson, N. Freinkel, F.B. Jungalwala, N. Clarke, The enzymatic formation of myoinositol 1,2 cyclic phosphate from phosphatidylinositol, Biochem. J. 122:605–607 (1971).

    PubMed  CAS  Google Scholar 

  19. P.W. Majerus, T.M. Connolly, H. Deckmyn, T.S. Ross, T. E. Bross, H. Ishii, V.S. Bansal, D.B. Wilson, The metabolism of phosphoinositide devoid messenger molecules, Science 234:1519–1526 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. J.A. Shayman, R.J. Auchus, A.R. Morrison, Bradykinin-induced changes in myo-inositol 1,2 (cyclic) phosphate in rabbit papillary collecting tubule cells, Biochem. Biophys. Acta. 888:171–175 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. D.B. Wilson, T.E. Bross, W.R. Sherman, R.A. Berger, P.W. Majerus, Inositol cyclic phosphates are produced by cleavage of phosphatidylphos-phoinositols (polyphosphoinositide) with purified sheep seminal vesicle phospholipase C enzymes, Proc. Natl. Acad. Sci. 82:4013–4017 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. D.B. Wilson, T. Connolly, T.E. Bross, P.W. Majerus, W.R. Sherman, A. Tyler, L.J. Rubin, J.E. Brown, Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C, J. Biol. Chem. 260:13496–13581 (1985).

    PubMed  CAS  Google Scholar 

  23. R.F. Irvine, A.J. Letcher, D.J. Lander, M.S. Berridge, Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss mouse 3T3 cells, Biochem. J. 240:301–304 (1986).

    CAS  Google Scholar 

  24. F.A. O’Rourke, S.P. Halenda, G.B. Zavoico, M.B. Feinstein, Inositol 1, 4, 5 trisphosphate releases Ca2+ from a Ca2+ -transporting membrane vesicle fraction derived from human platelets, J. Biol. Chem. 260:956–962 (1985).

    PubMed  Google Scholar 

  25. I.R. Batty, S.R. Nahorski, R.F. Irvine, Rapid formation of inositol 1, 3, 4, 5 tetrakis phosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232:211–215 (1985).

    PubMed  CAS  Google Scholar 

  26. R.F. Irvine, A.J. Letcher, J.P. Heslop, M.J. Berridge, The inositol tris/tetrakisphosphate pathway — demonstration of Ins(1, 4, 5)P33-kinase activity in animal tissues, Nature (London) 320:631–634 (1986).

    Article  CAS  Google Scholar 

  27. C.A. Hansener, S. Mah, J.R. Williamson, Formation and metabolism of inositol 1, 3, 4, 5 tetrakisphosphate in liver, J. Biol. Chem. 261: 8100–8103 (1986).

    Google Scholar 

  28. R.F. Irvine, A.J. Letcher, D.J. Lander, J.P. Heslop, M.J. Berridge, Inositol(3, 4) bisphosphate and inositol(l,3) bisphosphate in GH4 cells — evidence for complex breakdown of inositol(1, 3, 4) bisphosphate, BBRC 143:353–359 (1987).

    PubMed  CAS  Google Scholar 

  29. R.C. Inborn, V.S. Bansal, P.W. Majerus, Pathway for inositol 1, 3, 4 trisphosphate and 1,4 bisphosphate metabolism, Proc. Natl. Acad. Sci. 84: 2170–2174 (1987).

    Article  Google Scholar 

  30. C.D. Downes, M.C. Mussat, R.H. Michell, The inositol trisphosphate Phosphomonoesterase of the human erythrocyte membrane, Biochem. J. 203: 169–177 (1982).

    PubMed  CAS  Google Scholar 

  31. G.J. Tertoolen, B.C. Tilly, R.F. Irvine, W.H. Moolenaar, Electrophysiological responses to bradykinin and microinjected polyphosphates in neuroblastoma cells. Possible role of inositol 1,3,A trisphosphate in altering membrane potential, FEBS Lett. 214:365–369 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. R.F. Irvine and R.M. Moor, Microinjection of inositol 1, 3, 4, 5 tetrakisphosphate activates sea urchin eggs by a mechanism dependent in external Ca2+, Biochem. J. 240:917–920 (1986).

    PubMed  CAS  Google Scholar 

  33. M.D. Honsay, Egg activation unscrambles a potential role for IP4, TIBS 12:133–134 (1987).

    Google Scholar 

  34. Y. Takai, U. Kikkawa, Y. Kaibuchi, Y. Nishizuka, Membrane phospholipid metabolism and signal transduction for protein phosphorylation, Adv. Cyclic Nucl. Protein Phos. Res. 18:119–158 (1984).

    CAS  Google Scholar 

  35. A.M. Speigel, Signal transduction by guanine nucleotide binding proteins, Molecular and Cellular Endocrinology 49:1–16 (1987).

    Article  Google Scholar 

  36. M. Oinuma, T. Katuda, M. Ui, A new GTP-binding protein in differentiated Human Leukenic (HL-60) cells serving as the specific substrate of islet activating protein pertussis toxin, J. Biol. Chem. 262:8347–8353 (1987).

    PubMed  CAS  Google Scholar 

  37. I. Magnaldo, H. Talwar, W.D. Anderson, J. Pouyssegur, Evidence for a GTP-binding protein coupling thrombin receptor to PIP2-phospho-lipase C in membranes of hamster fibroblasts, FEBS Lett. 210:6–10 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. S. Cockcroft, The dependence on Ca2+ of the guanine nucleotide-activated polyphosphoinositide phosphodiesterase in neutrophil plasma membranes, Biochem. J. 240:503–507 (1986).

    PubMed  CAS  Google Scholar 

  39. G.M. Bokoch and A.G. Gilman, Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin, Cell 39:301–308 (1984).

    Article  PubMed  CAS  Google Scholar 

  40. P.C. Grenier, T.E. Rollins, W.L. Smith, Kinin induced prostaglandin synthesis by renal papillary collecting tubule cells in culture, Am. J. Physiol. F94–F104 (1981).

    Google Scholar 

  41. J.A. Shayman, K. Hruska, A.R. Morrison, Bradykinin stimulates increased intracellular calcium in papillary collecting tubules of the rabbit, Biochem. Biophys. Res. Comm. 134:299–306 (1986).

    Article  PubMed  CAS  Google Scholar 

  42. P.C. Isakson, A. Raz, S.E. Denny, A. Wyche, P. Needleman, Hormonal stimulation of arachidonate release from isolated perfused organs: relationship to prostaglandin biosynthesis, Prostaglandins 14:853–871 (1977).

    Article  PubMed  CAS  Google Scholar 

  43. J.A. Shayman, R.J. Auchas, A.R. Morrison, Bradykinin-induced changes in myoinositol 1,2(cyclic) phosphate in rabbit papillary collecting tubule cells, Biochem. Biophys. Acta. 888:171–175 (1986).

    Article  PubMed  CAS  Google Scholar 

  44. R.M. Zusman, J.R. Keiser, J.E. Handler, Vasopressin-stimulated prostaglandin E biosynthesis in the toad urinary bladder, J. Clin. Invest. 60:1339–1347 (1977).

    Article  PubMed  CAS  Google Scholar 

  45. J.E. Bisordi, D. Schlondorff, R.M. Hayes, Interaction of vasopressin and prostaglandins in the toad urinary bladder, J. Clin. Invest. 66: 1200–1210 (1980).

    Article  PubMed  CAS  Google Scholar 

  46. J.M. Forrest, C.J. Schneider, D.B. Goodman, Role of prostaglandin E2 in mediating the effects of pH on the hydrosomotic response to vasopressin in the toad urinary bladder, J. Clin. Invest. 69:499–506 (1982).

    Article  PubMed  CAS  Google Scholar 

  47. R.M. Burch and P.V. Halushka, Vasopressin stimulates prostaglandin and thromboxane synthesis in toad bladder epithelial cells, Am. J. Physiol. 243:F593–F597 (1982);

    PubMed  CAS  Google Scholar 

  48. M. Sato and M. Dunn, Interactions of vasopressin, prostaglandins, and cAMP in rat renal papillary collecting tubule cells in culture, Am. J. Physiol. 247:F423–F433 (1984).

    PubMed  CAS  Google Scholar 

  49. A. Garcia-Perez and W.L. Smith, Use of monoclonal antibodies to isolate cortical collecting tubule cells: AVP induces PGE release, Am. J. Physiol. 244:C211–C220 (1983).

    PubMed  CAS  Google Scholar 

  50. M. Kirschenbaum, A.G. Lower, W. Trizma, L.G. Fine, Regulation of vasopressin action by prostaglandins, J. Clin. Invest. 70:1193–1204 (1982).

    Article  PubMed  CAS  Google Scholar 

  51. B.M. Altura, Selective microvascular constrictor actions of some neurohypophyseal peptides, Eur. J. Pharmacol. 24:43–60 (1973).

    Article  Google Scholar 

  52. B.M. Altura and B.T. Altura, Actions of vasopressin, oxytocin, and synthetic analogs on vascular smooth muscle, Fed. Proc. 43:80–86 (1984).

    PubMed  CAS  Google Scholar 

  53. J. Grantham and J. Orloff, Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′-5′-monophosphate, and theophylline, J. Clin. Invest. 47:1154–1161 (1968).

    Article  PubMed  CAS  Google Scholar 

  54. S.Z. Katasic, J.T. Shepherd, P.M. Van Loutte, Vasopressin causes endothelium -dependent relaxations of the canine basilar artery, Circ. Res. 55:575–579 (1984).

    Google Scholar 

  55. T. Nabika, P.A. Velletri, W. Lovenberg, M. Beaven, Increase in cytosolic calcium and phosphoinositide metabolism induced by angiotensin II and [Arg]vasopressin in vascular smooth muscle cells, J. Biol. Chem. 260:4661–4670 (1985).

    PubMed  CAS  Google Scholar 

  56. D. Rhodes, V. Prpic, J.H. Exton, P.F. Blackmore, Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in hepatocytes by vasopressin, J. Biol. Chem. 258:2770–2773 (1983).

    PubMed  CAS  Google Scholar 

  57. J.R. Williamson, R.H. Cooper, K.J. Suresh, A.L. Thomas, Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver, Am. J. Physiol. 248:C203–C216 (1985).

    PubMed  CAS  Google Scholar 

  58. S.N. Prescott and P.W. Majerus, Characterization of 1, 2-diacylglycerol hydrolysis in human platelets, J. Biol. Chem. 258:764–769 (1983).

    PubMed  CAS  Google Scholar 

  59. L.M. Hallacher and W.R. Sherman, The effects of lithium ion and other agents on the activity of myoinositol-1-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901 (1980).

    Google Scholar 

  60. L.R. Chase and G.D. Aurbach, Parathyroid function and renal excretion of 3′5′ adenylic acid, Proc. Natl. Acad. Sci. USA 58:518–525 (1967).

    Article  PubMed  CAS  Google Scholar 

  61. D. Charbardes, M. Imbert, A. Clique, M. Montegut, F. Morel, PTH-sensitive adenylate cyclase activity of the rabbit nephron, Pflugers Arch. 354:229 (1975).

    Article  Google Scholar 

  62. Z.S. Agus, L.B. Gardner, L.H. Beck, M. Goldberg, Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium and phosphate, Am. J. Physiol. 224:1143–1148 (1973).

    PubMed  CAS  Google Scholar 

  63. K. Kurokawa, T. Ohno, H. Rasmussen, Ionic control of renal gluconeogenesis II. Effects of Ca2+ and H+ upon response to parathyroid hormone and cyclic AMP, Biochim. Biophys. Acta. 313:32–41 (1973).

    Article  PubMed  CAS  Google Scholar 

  64. Z.S. Agus, J.B. Puschett, D. Senesky, M. Goldberg, Mode of action of parathyroid hormone and cyclic adenosine 3′5′-monophosphate on renal tubular phosphate reabsorption in the dog, J. Clin. Invest. 50:617–626 (1971).

    Article  PubMed  CAS  Google Scholar 

  65. M.R. Hammerman and K.A. Hruska, Cyclic AMP-dependent protein phosphorylation in canine renal brush-border membrane vesicles is associated with decreased phosphate transport, J. Biol. Chem. 257:992–999 (1982).

    PubMed  CAS  Google Scholar 

  66. M.R. Hammerman, V.A. Hansen, J.J. Morrissey, Cyclic AMP-dependent protein phosphorylation and dephosphorylation alter phosphate transport in canine renal brush border vesicles, Biochim. Biophys. Acta. 755: 10–16 (1983).

    Article  PubMed  CAS  Google Scholar 

  67. N. Yanagawa and O.D. Jo, Possible role of calcium mediators in parathyroid hormone action on phosphate transport in rabbit renal brush border membrane, BBRC 128:278–284 (1985).

    PubMed  CAS  Google Scholar 

  68. N. Yanagawa and O.D. Jo, Possible role of calcium in parathyroid hormone actions in rabbit renal proximal tubules, Am. J. Physiol. 250: F942–F948 (1986).

    PubMed  CAS  Google Scholar 

  69. T.D. McKinney and P. Myers, PTH inhibition of bicarbonate transport by proximal convoluted tubules, Am. J. Physiol. 239:F127–F134 (1980).

    PubMed  CAS  Google Scholar 

  70. S. Sabatini, Parathyroid hormone inhibits water flow in isolated toad bladder, Am. J. Physiol. 250:F532–F538 (1986).

    PubMed  CAS  Google Scholar 

  71. P.A. Mennes, J. Yates, S. Klahr, Effects of ionophore A23187 and external calcium concentrations on renal gluconeogenesis, Proc. Soc. Exp. Med. 157:168–174 (1978).

    CAS  Google Scholar 

  72. N. Yanagawa, Cytosolic free calcium in isolated perfused rabbit proximal tubules: effect of parathyroid hormone (Abstract), Kidney Int. 31:361(A) (1987).

    Google Scholar 

  73. G.M. Dolson, M.K. Hise, E.J. Weinman, Relationship among parathyroid hormone, cAHP, and calcium on proximal tubule sodium transport, Am. J. Physiol. 249:F409–F416 (1985).

    PubMed  CAS  Google Scholar 

  74. C. Kleeman, D. Yamaguchi, S. Muallem, Regulation of parathyroid hormone-activated calcium channel by phorbol ester, Kidney Int. 31:351(A) (1987).

    Google Scholar 

  75. A. Besarab and J.W. Swanson, Tachyphylaxis to PTH in the isolated perfused rat kidney: resistance of anticalciuria, Am. J. Physiol. 247: F240–F245 (1984).

    PubMed  CAS  Google Scholar 

  76. P. Bidot-Lopez, R.V. Farese, M.A. Sabiro, Parathyroid hormone and adenosine 3′,5′ monophosphate acutely increases phospholipids of the phosphatidate-polyphosphoinositide pathway in rabbit kidney cortex tubules in vitro by a cycloheximide-sensitive process, Endocrinology 108:2078–2081 (1981).

    Article  PubMed  CAS  Google Scholar 

  77. V. Metzler, S. Weinreb, E. Bellorin-Font, K.A. Hruska, Parathyroid hormone stimulation of renal phosphoinositide metabolism is a cyclic nucleotide-independent effect, Biochim. Biophys. Acta. 712:258–267 (1982).

    Article  Google Scholar 

  78. H. Lo,. D.C. Lehotay, D. Katz, G.S. Levey, Parathyroid hormone-mediated incorporation of 32P-orthophosphate into phosphatidic acid and phosphatidylinositol in renal cortical slices, Endocrin. Res. Commun. 3(Suppl. 6):377–385 (1976).

    CAS  Google Scholar 

  79. K.A. Hruska, D. Moskowitz, P. Esbrit, R. Civitelli, S. Westbrook, M. Huskey, Stimulation of inositol triphosphate and diacylglycerol production in renal tubular cells by parathyroid hormone, J. Clin. Invest. 79:230–239 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Morrison, A.R., Portilla, D., Coyne, D. (1989). Peptide Hormones, Cytosolic Calcium and Renal Epithelial Response. In: Dunn, M.J., Patrono, C., Cinotti, G.A. (eds) Renal Eicosanoids. Advances in Experimental Medicine and Biology, vol 259. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5700-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5700-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5702-5

  • Online ISBN: 978-1-4684-5700-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics