Skip to main content

Arachidonic Acid Metabolism During Interactions Between Glomerular and Bone Marrow-Derived Cells

  • Chapter
Renal Eicosanoids

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 259))

Abstract

The concept that cell-cell interaction might modify the metabolism of arachidonic acid (AA) was already suggested nearly ten years ago by several studies in which platelets and blood vessels were coincubated and AA metabolites were analysed. Over subsequent years most of the researchers in this field focused their interest on the interaction between either endothelium and platelets, polymorphonuclear leukocytes (PMNL) and platelets, or PMNL and endothelium. A brief review of these interactions occurring in nonrenal tissue will be presented. The hypothesis that the glomerulus, which includes a peculiar endothelium, could be a preferential site for cell-cell interaction has not been investigated until recently. Yet, it is well documented that activated bone marrow-derived cells may invade the glomerular capillary in a number of experimental or human glomerulonephritides. Both cell types—glomerular and bone marrow-derived cells—were recognized to be the source of various lipidic inflammatory agents such as platelet-activating factor (PAF), prostaglandins (PG), hydroxyeicosatetraenoic acids (HETE) and leukotrienes (LT). This review focuses upon recent results providing strong evidence that, during interaction between glomerular and bone marrow-derived cells, changes occur in arachidonate metabolism. The functional consequence of these changes will be discussed, but we shall limit this review to the interactions involving lipidic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Needleman, A. Wyche, A. Raz, Platelet and blood vessel arachidonate metabolism and interactions, J. Clin. Invest. 63:345–349 (1979).

    Article  PubMed  CAS  Google Scholar 

  2. G. Hornstra, E. Haddeman, J.A. Don, Blood platelets do not provide endoperoxides for vascular prostacyclin production, Nature (London) 279: 66–68 (1979).

    Article  CAS  Google Scholar 

  3. A.J. Marcus, B.B. Weskler, E.A. Jaffe, M.J. Broekman, Synthesis of prostacyclin from platelet-derived endoperoxides by human endothelial cells, J. Clin. Invest. 66:979–986 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. A.I. Schafer, D.D. Crawford, M.A. Gimbrone, Unidirectional transfer of prostacyclin endoperoxides between platelets and endothelial cells, J. Clin. Invest. 73:1105–1112 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. P. Borgeat, S. Picard, P. Vallerand, P. Sirois, Transformation of arachidonic acid in leukocytes. Isolation and structural analysis of a novel dihydroxy derivative, Prostaglandins and Medicine 6:557–570 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. P. Borgeat, B. Fruteau de Laclos, S. Picard, J. Drapeau, P. Vallerand, E.J. Corey, Studies on the mechanism of formation of the 5S, 12S dihydroxy-6–8–10–14 (E, Z, E, Z)-icosatetraenoic acid in leukocytes, Prostaglandins 23:713–724 (1982).

    Article  PubMed  CAS  Google Scholar 

  7. A.J. Marcus, M.J. Broekman, L.B. Safier, H.L. Ullman, N. Islam, Formation of leukotrienes and other hydroxyacids during platelet-neutrophil interactions in vitro, Biochem. Biophvs. Res. Commun. 109:130–137 (1982).

    Article  CAS  Google Scholar 

  8. B. Fruteau de Laclos, P. Braquet, P. Borgeat, Characteristics of leukotriene (LT) and hydroxyeicosatetraenoic acid (HETE) synthesis in human leukocytes in vitro: Effect of arachidonic concentration, Prostaglandins. Leukotrienes and Medicine 13:47–52 (1984).

    Article  Google Scholar 

  9. P.Y.K. Wong, P. Weslund, M. Hamberg, E. Granström, P.H.W. Chao, B. Samuelsson, ω-hydroxylation of 12-L-hydroxy-5, 8, 10, 14 eicosatetraeno-ic acid in human polymorphonuclear leukocytes, J. Biol. Chem. 259: 2683–2686 (1984).

    PubMed  CAS  Google Scholar 

  10. A. Marcus, L.B. Safier, H.L. Ullman, M.J. Broekman, N. Islam, T.D. Oglesby, R. Gorman, 12S, 20-dihydroxyicosatetraenoic acid: a new icosa-noid synthesized by neutrophils from 12S-hydroxy icosatetraenoic acid produced by thrombin- or collagen-stimulated platelets, Proc. Natl. Acad. Sci. USA 81:903–907 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. C.A. Dahinden, R.M. Clancy, M. Gross, J.M. Chiller, T.E. Hugli, Leukotriene C4 production by murine mast cells: Evidence of a role for extracellular leukotriene A4, Proc. Natl. Acad. Sci. USA 82:6632–6636 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. F. Fitzpatrick, W. Ligget, J. McGee, S. Bunting, D. Morton, B. Samuelsson, Metabolism of leukotriene A4 by human erythrocytes, J. Biol. Chem. 259:11403–11407 (1984).

    PubMed  CAS  Google Scholar 

  13. C.R. Pace-Asciak, J. Klein, S.P. Spielberg, Metabolism of leukotriene A4 into C4 by human platelets, Biophvs. Biochim. Acta 877:68–74 (1986).

    Article  CAS  Google Scholar 

  14. C. Hadjiagapiou and A. Spector, 12-hydroxyeicosatetraenoic acid reduces prostacyclin production by endothelial cells, Prostaglandins 31:1135–1144 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. J. Turk, A. Wyche, P. Needleman, Inactivation of vascular prostacyclin synthetase by platelet lipoxygenase products, Biochem. Biophvs. Res. Commun. 95:1628–1632 (1980).

    Article  CAS  Google Scholar 

  16. Y. Hashimoto, C. Naito, T. Teramoto, H. Kato, M. Kinoshinta, M. Kawamura, H. Hayashi, H. Oka, Time-dependent inhibition of the cyclo-oxygenase pathway by 12-hydroperoxy 5, 8, 10, 14-eicosatetraenoic acid, Biochem. Biophvs. Res. Commun. 130:781–785 (1985).

    Article  CAS  Google Scholar 

  17. J. Maclouf, B. Fruteau de Laclos, P. Borgeat, Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydro-peroxy-icosatetraenoic acid, Proc. Natl. Acad. Sci. USA 79:6042–6046 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. A. Delmaschio, J. Maclouf, E. Corvazier, M.J. Grange, P. Borgeat, Activated platelets stimulate human neutrophil functions, Nouv. Rev. Fr. Hematol. 27:275–278 (1985).

    CAS  Google Scholar 

  19. J. Maclouf, A. Delmaschio, M.J. Grange, P. Borgeat, Regulation and manipulation of arachidonate cascade in cell-cell interaction, in: “Advances in Prostaglandin, Thromboxane and Leukotriene Research,” Raven Press, New York 15:209–211 (1985).

    Google Scholar 

  20. J.Y. Vanderhoek, R.W. Bryant, J.M. Bayley, 15-hydroxy-5–8, 11, 13-eicosate-traenoic acid. A potent and selective inhibitor of platelet lipoxygenase, J. Biol. Chem. 255:5956–5998 (1980).

    Google Scholar 

  21. J.Y. Vanderhoek, R.W. Bryant, J.M. Bayley, Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5, 8, 11, 13-eicosate-traenoic acid, J. Biol. Chem. 255:10064–10066 (1980).

    PubMed  CAS  Google Scholar 

  22. J.Y. Vanderhoek, S.N. Tare, J.M. Bayley, A.L. Goldstein, D. Pluznik, New role for 15-hydroxyeicosatetraenoic acid, J. Biol. Chem. 257:12191–12195 (1982).

    PubMed  CAS  Google Scholar 

  23. L.A. Boxer, J.M. Allen, M. Schmidt, M. Yoder, R.L. Baehner, Inhibition of polymorphonuclear leukocyte adherence by prostacyclin, J. Lab. Clin. Med. 95:672–678 (1980).

    PubMed  CAS  Google Scholar 

  24. D.K. Miller, S. Sadowski, D.D. Soderman, F.A. Kuehl, Endothelial cell prostacyclin production induced by activated neutrophils, J. Biol. Chem. 260:1006–1014 (1985).

    PubMed  CAS  Google Scholar 

  25. J.M. Harlan and K.S. Callahan, Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells, J. Clin. Invest. 74:442–448 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. L. Taylor, M.J. Menconi, P. Polgar, The participation of hydroperoxides and oxygen radicals in the control of prostaglandin synthesis, J. Biol. Chem. 258:6855–6857 (1983).

    PubMed  CAS  Google Scholar 

  27. R.A. Lewis, E.J. Goetzl, J.M. Drazen, N.A. Soter, K.F. Austen, E.J. Corey, Functional characterization of synthetic leukotriene B and its stereochemical isomers, J. Exp. Med. 154:1243–1248 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. E. Pirotsky, E. Ninio, J. Bidault, P. Pfister, J. Benveniste, Biosynthesis of platelet-activating factor. VI. Precursor of platelet-activating factor and acyl transferase activity in isolated rat kidney cells, Lab. Invest. 51:567–572 (1984).

    Google Scholar 

  29. A. Hassid, M. Konieczkowski, M.J. Dunn, Prostaglandin synthesis in isolated rat kidney glomeruli, Proc. Natl. Acad. Sci. USA 76:1155–1159 (1979).

    Article  PubMed  CAS  Google Scholar 

  30. J. Sraer, J.D. Sraer, D. Chansel, Prostaglandin synthesis by isolated rat renal glomeruli, Mol. Cell. Endocrinol. 16:29–37 (1979).

    Article  PubMed  CAS  Google Scholar 

  31. V.W. Folkert and D. Schlondorff, Prostaglandin synthesis in isolated glomeruli, Prostaglandins 17:79–86 (1979).

    Article  PubMed  CAS  Google Scholar 

  32. J. Sraer, N. Ardaillou, J.D. Sraer, R. Ardaillou, In vitro prostaglandin synthesis by human glomeruli and papillae, Prostaglandins 23:855–864 (1982).

    Google Scholar 

  33. J. Sraer, W. Siess, L. Moulonguet-Doleris, J.P. Oudinet, F. Dray, R. Ardaillou, In vitro prostaglandin synthesis by various rat renal preparations, Biochim. Biophvs. Acta 710:45–52 (1982).

    Google Scholar 

  34. J. Sraer, M. Rigaud, M. Bens, H. Rabinovitch, R. Ardaillou, Metabolism of arachidonic acid via the lipoxygenase pathway in human and murine glomeruli, J. Biol. Chem. 258:4325–4330 (1983).

    PubMed  CAS  Google Scholar 

  35. K. Jim, A. Hassid, F. Sun, M.J. Dunn, Lipoxygenase activity in rat kidney glomeruli, glomerular epithelial cells and cortical tubules, J. Biol. Chem. 257:10294–10299 (1982).

    PubMed  CAS  Google Scholar 

  36. R.B. Sterzel, J. H.H. Ehrich, H. Lucia, D. Thomson, M. Kashgarian, Mesangial disposal of glomerular immune deposits in acute malarial glomerulonephritis of rats, Lab. Invest. 46:209–214 (1982).

    PubMed  CAS  Google Scholar 

  37. S.R. Holdsworth, N.W. Thomson, E.F. Glasgow, J.P. Dowling, R.C. Atkins, Tissue culture of isolated glomeruli in experimental chronic immune complex glomerulonephritis, Nephron 32:227–233 (1978).

    Google Scholar 

  38. H. Shigematsu, Morphological approach on the action and function of monocytes and macrophages in acute experimental glomerulonephritis, in: “Proceedings of the VIIIth International Congress of Nephrology,” W. Zurukzogzu, M. Papadimetriou, M. Purpasopoulos, M. Sion, C. Zamboulis, eds., S. Karger, Basel, pp. 872–878 (1981).

    Google Scholar 

  39. G.J. Becker, W.W. Hancock, J.L. Stow, E.F. Glasgow, R.C. Atkins, N.M. Thomson, Involvement of the macrophages in experimental crescentic glomerulonephritis, J. Exp. Med. 147:98–109 (1978).

    Article  Google Scholar 

  40. R.C. Atkins, S.R. Holdsworth, W.W. Hancock, N.M. Thomson, E.F. Glasgow, Cellular immune mechanisms in human glomerulonephritis : the role of mononuclear leukocytes, Springer Semin.Immunopathol. 5:269–296 (1982).

    CAS  Google Scholar 

  41. A.B. Magil, L.O. Wadsworth, M. Loewen, Monocytes and human renal glomerular disease. A quantitative evaluation, Lab. Invest. 44:27–33 (1981).

    PubMed  CAS  Google Scholar 

  42. N.M. Thomson, S.R. Holdsworth, E.F. Glasgow, R.C. Atkins, The macrophage in the development of experimental crescentic glomerulonephritis, Am. J. Pathol. 94:223–240 (1979).

    PubMed  CAS  Google Scholar 

  43. A.E. Postlethwaite and A. Kang, Collagen and collagen peptide Chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307 (1976).

    Article  PubMed  CAS  Google Scholar 

  44. C.H. Dubois, G. Goffinet, J.B. Foidard, C. Dechenne, J.M. Foidard, P. Mahieu, Evidence for a particular binding capacity of rat peritoneal macrophages to rat glomerular mesangial cells in vitro, Europ. J. Clin. Invest. 12:239–246 (1982).

    Article  PubMed  CAS  Google Scholar 

  45. M.T. Quinn, S. Parthasarathy, D. Steinberg, Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified form of low density lipoprotein, Proc. Natl. Acad. Sci. USA 82:5949–5953 (1985).

    Article  PubMed  CAS  Google Scholar 

  46. L. Baud, J. Sraer, F. Delarue, M. Bens, F. Balavoine, D. Schlondorff, R. Ardaillou, J.D. Sraer, Lipoxygenase products mediate the attachment of rat macrophages to glomeruli in vitro, Kidney Int. 27:855–863 (1985).

    Article  PubMed  CAS  Google Scholar 

  47. W.A. Scott, N.A. Pawloski, M. Andreach, Z.A. Cohn, Resting macrophages produce distinct metabolites from exogenous arachidonic acid, J. Exp. Med. 155:535–547 (1982).

    Article  PubMed  CAS  Google Scholar 

  48. C.A. Rouzer, W.A. Scott, A.L. Hamill, F.T. Liu, D.H. Katz, Z.A. Cohn, Secretion of leukotriene C and other arachidonic acid metabolites by macrophages challenged with immunoglobulin E immune complexes, J. Exp. Med. 156:1077–1086 (1982).

    Article  PubMed  CAS  Google Scholar 

  49. H. Rabinovitch, J. Durand, M. Rigaud, F. Mendy, J.C. Breton, Transformation of arachidonic acid into monohydroxy-eicosatetraenoic acids by mouse peritoneal macrophages, Lipids 16:518–524 (1981).

    Article  PubMed  CAS  Google Scholar 

  50. N. Doig and A.W. Ford-Hutchinson, The production and characterization of products of the lipoxygenase enzyme system released by rat peritoneal macrophages, Prostaglandins 20:1007–1019 (1980).

    Article  PubMed  CAS  Google Scholar 

  51. I. Koyama, H. Yamagami, T. Kuwal, M. Kurata, Release of 6-keto-prostaglandin F and thromboxane B2 from mouse peritoneal macrophages during their adhesion and spreading on a glass surface, Prostaglandins 23:777–785 (1982).

    Article  PubMed  CAS  Google Scholar 

  52. E.A. Lianos, M.A. Rahman, M.J. Dunn, Glomerular arachidonate lipoxygenation in rat nephrotoxic serum nephritis, J. Clin. Invest. 76:1355–1359 (1985).

    Article  PubMed  CAS  Google Scholar 

  53. R. Lacave, F. Delarue, E. Rondeau, J.D. Sraer, 5- and 12-hydroperoxyte-traenoic acids promote contraction of cultured glomerular visceral epithelial cells, Kidney Int. 27:339 (Abstr.) (1986).

    Google Scholar 

  54. K. Kuhn, G.B. Ryan, S.J. Hein, R.G. Galaske, M.J. Karnovsky, An ultrastructural study of the mechanisms of proteinuria in rat nephrotoxic nephritis, Lab. Invest. 36:375–387 (1977).

    PubMed  CAS  Google Scholar 

  55. L. Baud, J. Hagege, J. Sraer, E. Rondeau, J. Perez, R. Ardaillou, Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with stimulation of lipoxygenase activity, J. Exp. Med. 158:1836–1852 (1983).

    Article  PubMed  CAS  Google Scholar 

  56. J. MacDermont, C.R. Kelsey, K.A. Maddell, P. Richmond, R.K. Knight, P.J. Cole, C.T. Dollery, D.N. Landon, I.A. Blair, Synthesis of leukotriene B4 and prostanoids by human alveolar macrophages: analysis by gas chromatography/mass spectrometry, Prostaglandins 27:163–169 (1984).

    Article  Google Scholar 

  57. W. Hsueh and F.F. Sun, Leukotriene B4 biosynthesis by alveolar macrophages, Biochem. Biophvs. Res. Commun. 106:1085–1091 (1982).

    Article  CAS  Google Scholar 

  58. J.A. Rankin, M. Hitchock, W. Merrill, M.K. Bach, J.R. Braschler, P.W. Askenase, IgE-dependent release of leukotriene C4 from alveolar macrophages, Nature (London) 297:329–331 (1982) .

    Article  CAS  Google Scholar 

  59. J. Sraer, M. Bens, J.D. Sraer, R. Ardaillou, Specific activation of platelet thromboxane (TX) synthetase by human glomeruli in vitro, Kidney Int. 64:168 (Abstr.) (1984).

    Google Scholar 

  60. J. Sraer, C. Wolf, J.P. Oudinet, M. Bens, R. Ardaillou, J.D. Sraer, Human glomeruli release saturated fatty acids which stimulate thromboxane synthesis in platelets, Kidney Int.. in press (1987).

    Google Scholar 

  61. D. DeProst and A. Kanfer, Quantitative assessment of procoagulant activity in isolated rat glomeruli, Kidney Int. 28:566–568 (1985).

    Article  CAS  Google Scholar 

  62. J.R. Maynard, C.A. Heckman, F.A. Pitlick, Y. Nemerson, Association of tissue factor activity with the surface of cultured cells, J. Clin. Invest. 52:1427–1434 (1973).

    Article  Google Scholar 

  63. M. Colucci, G. Balconi, R. Lorenzet, A. Pietra, D. Locati, M.B. Donati, N. Semeraro, Cultured human endothelial cells generate tissue factor in response to endotoxin, J. Clin. Invest. 71:1893–1896 (1983).

    Article  PubMed  CAS  Google Scholar 

  64. M. Poe and J.M. Liesch, Mouse submaxillary gland renin contains a noncovalently attached fatty acid, J. Biol. Chem. 258:9856–9860 (1983).

    PubMed  CAS  Google Scholar 

  65. A.A. Aderem, M.M. Keum, E. Pure, Z.A. Cohn, Bacterial lipopolysaccharides, phorbolmyristate acetate and zymosan induce the myristoylation of specific macrophage proteins, Proc. Natl. Acad. Sci. USA 83:5817–5821 (1986).

    Article  PubMed  CAS  Google Scholar 

  66. D.A. Towler and L. Glaser, Protein fatty acid acylation: enzymatic synthesis of an N-myristoyl glycl peptide, Proc. Natl. Acad. Sci. USA 83:2812–2816 (1986).

    Article  PubMed  CAS  Google Scholar 

  67. E.N. Olson, D.A. Towler, L. Glaser, Specificity of fatty acid acylation of cellular proteins, J. Biol. Chem. 260:3784–3790 (1985).

    PubMed  CAS  Google Scholar 

  68. R.M.C. Dawson, R.F. Irvine, J. Bray, P.J. Quinn, Long-chain unsaturated diacylglycerols cause perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipid attack, Biochem. Biophys. Res. Commun. 125:836–842 (1984).

    Article  CAS  Google Scholar 

  69. J. Sraer, M. Bens, J.D. Sraer, L. Baud, E. Podjarny, R. Ardaillou, Changes in arachidonic acid metabolism during interaction between glomerular and bone marrow-derived cells, Advances in Inflammation Research 10:291–293 (1986).

    Google Scholar 

  70. E. Dratewka-Kos, D.O. Tinker, B. Kindl, Unsaturated fatty acids inhibit ADP-arachidonate-induced platelet aggregation without affecting thromboxane synthesis, Biochem. Cell. Biol. 64:906–913 (1985).

    Google Scholar 

  71. J. Sraer, L. Baud, M. Bens, E. Podjarny, D. Schlondorff, R. Ardaillou, J.D. Sraer, Glomeruli cooperate with macrophages in converting arachidonic acid to prostaglandins and hydroxyeicosatetraenoic acids, Prostaglandins. Leukotrienes and Medicine 13:67–74 (1984).

    Article  CAS  Google Scholar 

  72. J. Sraer, M. Bens, J.P. Oudinet, R. Ardaillou, Bioconversion of leukotriene C4 by rat glomeruli and papilla, Prostaglandins 31:909–921 (1986).

    Article  PubMed  CAS  Google Scholar 

  73. K. Bernström and S. Hammarström, Metabolism of leukotriene D by porcine kidney, J. Biol. Chem. 256:9579–9582 (1981).

    PubMed  Google Scholar 

  74. E.J. Goetzl, B.A. Burrall, L. Baud, K.H. Scriven, J.D. Levine, C.H. Koo, Generation and recognition of leukotriene mediators of hypersensitivity and inflammation, Dig. Pis. Sci., in press (1987).

    Google Scholar 

  75. E.J. Goetzl, L.L. Brindley, D.W. Goldman, Enhancement of human neutrophil adherence by synthetic leukotriene constituents of the slow-reacting substance of anaphylaxis, Immunology 50:35–41 (1983).

    PubMed  CAS  Google Scholar 

  76. L. Baud, J. Sraer, J. Perez, M.P. Nivez, R. Ardaillou, Leukotriene C4 binds to human glomerular epithelial cells and promotes their proliferation in vitro, J. Clin. Invest. 76:374–377 (1985).

    Article  PubMed  CAS  Google Scholar 

  77. R. Barnett, P. Goldwasser, L.A. Scharschmidt, D. Schlondorff, Effects of leukotrienes on isolated rat glomeruli and cultured mesangial cells, Am. J. Phvsiol. 250:F838–F844 (1986).

    CAS  Google Scholar 

  78. M. Simonson and M.J. Dunn, Leukotrienes C4 and D4 contract rat glomerular mesangial cells, Kidnev Int. 30:524–531 (1986).

    Article  CAS  Google Scholar 

  79. E.B. Cramer, L. Pologe, A. Pawlowski, Z.A. Cohn, W.A. Scott, Leukotriene C promotes prostacyclin synthesis by human endothelial cells, Proc. Natl. Acad. Sci. USA 80:4109–4113 (1983).

    Article  PubMed  CAS  Google Scholar 

  80. M.A. Clark, D. Littlejohn, T.P. Conway, S. Mong, S. Steiner, S.T. Crooke, Leukotriene D4 treatment of bovine aortic endothelial cells and murine smooth muscle cells in culture results in an increase in phospholipase A2 activity, J. Biol. Chem. 261:10713–10718 (1986).

    PubMed  CAS  Google Scholar 

  81. L.A. Scharschmidt, J.G. Douglas, M.J. Dunn, Angiotensin II and eicosanoids in the control of glomerular size in the rat and human, Am. J. Phvsiol. 250:F348–F356 (1986).

    CAS  Google Scholar 

  82. L. Baud, J. Perez, M. Denis, R. Ardaillou, Modulation of fibroblast proliferation by sulfidopeptide leukotrienes: effect of indomethacin, J. Immunol. 138:1190–1195 (1987).

    PubMed  CAS  Google Scholar 

  83. D. Schlondorff, J.A. Satriano, J. Hagege, J. Perez, L. Baud, Effect of platelet-activating factor and serum-treated zymosan on prostaglandin E2 synthesis, arachidonic acid release and contraction of cultured rat mesangial cells, J. Clin. Invest. 73:1227–1231 (1984).

    Article  PubMed  CAS  Google Scholar 

  84. D. Schlondorff and R. Neuwirth, Platelet-activating factor and the kidney, Am. J. Phvsiol. 251:F1–F11 (1986).

    CAS  Google Scholar 

  85. L. Baud, J. Perez, R. Ardaillou, Dexamethasone and hydrogen peroxide production by mesangial cells during phagocytosis, Am. J. Physiol. 250: F596–F604 (1986).

    PubMed  CAS  Google Scholar 

  86. E.A. Lianos, Leukotriene synthesis in nephrotoxic serum nephritis: role of complement and polymorphonuclear leukocytes, Clin. Res. 34:972A (Abstr.) (1986).

    Google Scholar 

  87. E.A. Lianos and B. Noble, Glomerular arachidonate 5-lipoxygenation in active and passive Heymann nephritis, Kidnev Int. 31:277 (Abstr.) (1987).

    Google Scholar 

  88. M.A. Rahman, M. Nakasawa, S.N. Emancipator, M.J. Dunn, Increased leukotriene B4 (LTB4) synthesis in immune-injured rat glomeruli, Kidnev Int. 29:343 (Abstr.) (1986).

    Google Scholar 

  89. S. Shak and I.M. Goldstein, ω-oxydation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes, J. Biol. Chem. 259:10181–10187 (1984).

    PubMed  CAS  Google Scholar 

  90. O. Breuer and S. Hammarström, Enzymatic conversion of leukotriene B4 to 6-transleukotriene B4 by rat kidney homogenates, Biochem. Biophvs. Res. Commun. 142:667–673 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Sraer, J., Bens, M., Oudinet, JP., Baud, L. (1989). Arachidonic Acid Metabolism During Interactions Between Glomerular and Bone Marrow-Derived Cells. In: Dunn, M.J., Patrono, C., Cinotti, G.A. (eds) Renal Eicosanoids. Advances in Experimental Medicine and Biology, vol 259. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5700-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5700-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5702-5

  • Online ISBN: 978-1-4684-5700-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics