Skip to main content

Phosphorylation of Sterol Carrier Protein 2 by Protein Kinase C

  • Chapter
Growth Factors and the Ovary

Abstract

Ca++ has been implicated in the regulation of the steroidogenic response to tropic hormones (1–3), including the transport of cholesterol to the mitochondrial site of side-chain cleavage, a step thatmay also involve sterol carrier protein 2 (SCP2) (4). SCP2 is a cholesterol carrier that facilitates the intracellular transfer of cholesterol to cytochrome P450scc, the rate-limiting enzyme in the steroidogenic process, located in the inner mitochondrial membrane. Thus, changes in the content and/or activity of SCP2 may be expected to play a key role in cholesterol transport and, therefore, in steroidogenesis (5). SCP2 is present in nonsteroidogenic and steroidogenic tissues, including the ovary (6,7). Ovarian SCP2 closely resembles hepatic SCP2 in its amino acid composition (7) and, presumably, in its overall structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hall PF, Osawa S, Thomasson C. A role for calmodulin in the regulation of steroidogenesis. J Cell Biol 1981; 90:402–7.

    Article  PubMed  CAS  Google Scholar 

  2. Carnegie JA, Tsang BK. The calcium-calmodulin system : participation in the regulation of steroidogenesis at different stages of granulosa cell differentiation. Biol Reprod 1984;30:515–22.

    Article  PubMed  CAS  Google Scholar 

  3. Veldhuis JD, Klase JF, Demers LM, Chafouleas JG. Mechanisms subserving calcium’s modulation of luteinizing hormone action in isolated swine granulosa cells. Endocrinology 1984; 114:441–8.

    Article  PubMed  CAS  Google Scholar 

  4. Vahouny GV, Chanderbhan R, Kharroubi A, Noland BJ, Pastuszyn A, Scallen TJ. Sterol carrier and lipid transfer proteins. Adv Lipid Res 1987; 22:83–113.

    PubMed  CAS  Google Scholar 

  5. Trzeciak WH, Simpson ER, Scallen TJ, Vahouny GV, Waterman MR. Studies on the synthesis of sterol carrier protein-2 in rat adrenocortical cells in monolayer culture. J Biol Chem 1987; 262:3713–7.

    PubMed  CAS  Google Scholar 

  6. Teerlink T, Van der Krift TP, Van Heusden PH, Wirtz KWA. Determination of nonspecific lipid transfer protein in rat tissues and Morris hepatomas by enzyme immunoassay. Biochim Biophys Acta 1984; 793:251–9.

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka T, Billheimer JT, Strauss JF III. Luteinized rat ovaries contain a sterol carrier protein. Endocrinology 1984; 114:533–40.

    Article  PubMed  CAS  Google Scholar 

  8. Trzaskos JM, Gaylor JL. Cytosolic modulators of activities of microsomal enzymes of cholesterol biosynthesis; purification and characterization of a nonspecific lipid-trans-fer protein. Biochim Biophys Acta 1983; 751:52–65.

    Article  PubMed  CAS  Google Scholar 

  9. Steinschneider A, Khan I. In vitro phosphorylation of midpregnant rat luteal proteins in the presence of polymyxin B and compound 48/80 [Abstract]. Endocrine Soc 70th Ann Meeting 1988; 343.

    Google Scholar 

  10. Wrenn RW, Wooten MW. Dual calcium dependent protein phosphorylation systems in pancreas and their differential regulation by polymyxin B. Life Sci 1984; 35:267–76.

    Article  PubMed  CAS  Google Scholar 

  11. Pastuszyn A, Noland BJ, Bazan JF, Hetterick RJ, Scallen TH. Primary sequence and structural analysis of sterol carrier protein 2 from rat liver: homology with immunoglobulins. J Biol Chem 1987; 262:13219–27.

    PubMed  CAS  Google Scholar 

  12. Shinohara O, Knecht M, Feng K, Catt KJ. Activation of protein kinase C potentiates cyclic AMP production and stimulates steroidogenesis in differentiated ovarian granulosa cells. J Steroid Biochem 1985; 24:161–8.

    Google Scholar 

  13. Kawai Y, Qark MR. Phorbol ester regulation of rat granulosa cell prostaglandin and progesterone accumulation. Endocrinology 1985; 116:2320–6.

    Article  PubMed  CAS  Google Scholar 

  14. Brunswig B, Bohnet HG. Stimulation of progesterone production in bovine luteal cells by mezerin and the phorbol ester PMA. Acta Endocrinol [suppl] (Copenh) 1986; 111:72–3.

    Google Scholar 

  15. Gibson DM. Reversible phosphorylation of hepatic HMG-CoA reductase in endocrine and feedback control of cholesterol biosynthesis. In: Preiss B, ed. Regulation of HMG-CoA reductase. Academic Press, 1985:79–132.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Steinschneider, A., McLean, M.P., Billheimer, J.T., Palfrey, H.C., Gibori, G. (1989). Phosphorylation of Sterol Carrier Protein 2 by Protein Kinase C. In: Hirshfield, A.N. (eds) Growth Factors and the Ovary. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5688-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5688-2_55

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5690-5

  • Online ISBN: 978-1-4684-5688-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics