Identification of a Synaptic Membrane-Localized Isoform of the Calcium-Pumping ATPase

  • D. M. Mann
  • P. Brandt
  • B. Sisken
  • T. C. Vanaman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)


Calcium-pumping membrane ATPases play the essential function of terminating Ca2+-dependent responses. Two broad classes of Ca2+-pumping ATPases are now known to exist in animal cells, those of internal membranes (100 kDa) and the plasma membrane enzymes (120–140 kDa). These two families of Ca2+-pumping ATPases differ substantially in molecular, enzymatic and regulatory properties commensurate with their differiential localization and physiological roles. Recent studies in a number of laboratories have provided evidence that multiple isoforms of each type of Ca2+ -ATPase are produced in different cell types as products of either differential splicing events or different genes. These sets of isoforms are almost certain to have subtle differences in functional properties related to the requirements of a particular biological setting.


Bovine Brain Synaptic Membrane Synaptosomal Membrane Brain cDNA Library Immunolocalization Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benaim, G., Zurini, M., and Carafoli, E. (1984). J. Biol. Chem. 259: 8471–8477.PubMedGoogle Scholar
  2. 2.
    Billingsley, M.E., Pennypacker, K.R., Hoover, C.G., Brigati, D.J., and Kincaid, R.L. (1985). Proc. Nat’l. Acad. Sci. (USA). 82: 7585–7589.CrossRefGoogle Scholar
  3. 3.
    Brandt, P., Zurini, M., Sisken, B.F., Rhoads, R.E. and Vanaman, T.C. (1987). in Calcium Binding Proteins In Health and Disease, eds. Norman, A.N., Means, A.R. and Vanaman, T.C. (Academic Press), pp. 544–554.Google Scholar
  4. 4.
    Brandt, P., Zurini, M., Neve, R.L., Rhoads, R.E., and Vanaman, T.C. (1988). Proc. Nat’l. Acad. Sci. (USA). 85: 2914–2918.CrossRefGoogle Scholar
  5. 5.
    Burnette, W.N. (1981). Anal. Biochem. 112, 195–203.PubMedCrossRefGoogle Scholar
  6. 6.
    Cotman, C.W. (1974). In: Methods in Enzymology 31, 445–452.PubMedCrossRefGoogle Scholar
  7. 7.
    James, P., Maeda, M., Fisher, R., Verma, A.K., Krebs, J., Penniston, J.T., and Carafoli, E. (1988). J. Biol. Chem. 263: 2905–2910.PubMedGoogle Scholar
  8. 8.
    Laemmli, U. (1970). Nature (Lond.) 227, 680–685.CrossRefGoogle Scholar
  9. 9.
    Mann, D.M., and Vanaman, T.C. (1989). J. Biol. Chem. (in press).Google Scholar
  10. 10.
    Morrissey, J.H. (1981). Anal. Biochem. 117, 307–310.PubMedCrossRefGoogle Scholar
  11. 11.
    Neve, R.L., Harris, P., Kosik, K.S., Kurnit, D.M. and Donlon, T.A. (1986). Mol. Brain Res. 1, 271–280.CrossRefGoogle Scholar
  12. 12.
    Niggli, V., Penniston, J.T., and Carafoli, E. (1979). J. Biol. Chem. 254, 9955–9958.PubMedGoogle Scholar
  13. 13.
    Shull, G.E., and Greeb, J. (1988). J. Biol. Chem. 263, 8646–8657.PubMedGoogle Scholar
  14. 14.
    Verma, A.K., Filoteo, A.G., Stanford, D.R., Wieben, E.D., Penniston, J.T., Strehler, E.E., Fischer, R., Heim, R., Vogel, G., Mathews, S., Strehler-Page, M.-A., James, P., Vorherr, T., Krebs, J., and Carafoli, E. (1988). J. Biol. Chem. 263, 14152–14159.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. M. Mann
    • 1
  • P. Brandt
    • 1
  • B. Sisken
    • 2
  • T. C. Vanaman
    • 1
  1. 1.Department of BiochemistryUniversity of Kentucky School of MedicineLexingtonUSA
  2. 2.Department of AnatomyUniversity of Kentucky School of MedicineLexingtonUSA

Personalised recommendations