The Calcium Pump of the Plasma Membrane: Structure-Function Relationships

  • Ernesto Carafoli
  • Anil K. Verma
  • Peter James
  • Emanuel Strehler
  • John T. Penniston
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)


The Ca pump of the plasma membrane is an ATPase of the P-class (1–2), i.e.; it forms a phosphorylated intermediate during the reaction cycle and is inhibited by low concentrations of vanadate (see 3–4 for comprehensive reviews). Calmodulin stimulates the ATPase by direct interaction, shifting the Ca affinity of the enzyme from the normal Km value, of between 10 and 20 μM to values around 0.5 μM. The direct interaction with calmodulin has been exploited to purify the enzyme to essential homogeneity on a calmodulin affinity chromatography column (5). The purified enzyme has been shown to be fully competent functionally: it has the expected high affinity for Ca in the presence of calmodulin, it is sensitive to vanadate, and can be reconstituted as an ATP-dependent Ca-transporting system in liposomes. Work on the purified enzyme has permitted to establish that its Ca/ATP-stoichiometry is 1, and that protons are obligatorily exchanged for Ca in the transport reaction. Table 1 offers a summary of the properties of the ATPase: A comprehensive review on the properties of the purified enzyme has appeared in 1982 (6). Most of the work on the pump has so far been carried out on erythrocytes, but the enzyme has been detected, with essentially the same properties, in all plasma membranes so far examined, with the possible exception of liver. One interesting property of the pump, first established on heart plasma membranes(7) but later extended to the enzyme purified from heart sarcolemma and from erythrocytes (8) is the activation by a phosphorylation reaction mediated by the cAMP-dependent protein kinase.


Plasma Membrane ATPase Calmodulin Binding Domain Erythrocyte Plasma Membrane Complete Primary Structure Heart Sarcolemma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. L. Pedersen and E. Carafoli, Ion-motive ATPases, Trends in Biochem. Sciences. 12:146(1987)CrossRefGoogle Scholar
  2. 2.
    P. L. Pedersen and E. Carafoli, Ion-motive ATPases, Trends in Biochem. Sciences. 12:186 (1987)CrossRefGoogle Scholar
  3. 3.
    H. J. Schatzmann, The calcium pump of erythrocytes and other animal cells, in: “Membrane Transport of Calcium,” E. Carafoli, ed., Acad. Press, London (1982)Google Scholar
  4. 4.
    J. T. Penniston, Plasma membrane Ca2+ ATPase as active Ca2+ pumps, in: “Calcium and Cell Function,” W. Y. Cheung, ed., Acad. Press, New York (1984)Google Scholar
  5. 5.
    V. Niggli, J. T. Penniston, and E. Carafoli, Purification of the (Ca2++ Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column, J. Biol.Chem. 254:9955 (1979)PubMedGoogle Scholar
  6. 6.
    E. Carafoli and M. Zurini, The Ca2+-pumping ATPase of plasma membranes. Purification, reconstitution and properties, Biochim. Biophys. Acta. Rev. in Bioenerg. 683:279 (1982)Google Scholar
  7. 7.
    P. Caroni and E. Carafoli, Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation process, J. Biol. Chem. 256:9371 (1981)PubMedGoogle Scholar
  8. 8.
    L. Neyses, L. Reinlib, and E. Carafoli, Phosphorylation of the Ca2+ pumping ATPase of heart sarcolemma and erythrocyte plasma membrane by the cAMP-dependent protein kinase, J. Biol. Chem. 260:10283 (1985)PubMedGoogle Scholar
  9. 9.
    M. Zurini, J. Krebs, J. T. Penniston, and E. Carafoli, Controlled proteolysis of the purified Ca2+-ATPase of erythrocyte membrane, J. Biol. Chem. 259:618 (1984)PubMedGoogle Scholar
  10. 10.
    G. Benaim, M. Zurini, and E. Carafoli, Different conformational statesof the purified Ca2+ ATPase of the erythrocyte plasma membrane, revealed by controlled Trypsin proteolysis, J. Biol. Chem. 259:8471 (1984)PubMedGoogle Scholar
  11. 11.
    P. James, M. Maeda, R. Fischer, A. K. Verma, J. Krebs, J. T. Penniston, and E. Carafoli, Identification and primary structure of a calmodulin binding domain of the Ca2+-pump of human erythrocytes, J. Biol. Chem. 263:2905 (1988)PubMedGoogle Scholar
  12. 12.
    A. G. Filoteo, J. P. Gorski, and J. T. Penniston, The ATP-binding site of the erythrocyte membrane Ca2+ pump, J. Biol. Chem. 262:6526 (1987)PubMedGoogle Scholar
  13. 13.
    P. James, E. Zvaritch, M. Shakhparonov, J. T. Penniston, and E. Carafoli, The amino acid sequence of the phosphorylation domain of the erythrocyte Ca2+ ATPase, Biochem. Biophys. Res. Commun. 149:7 (1987)PubMedCrossRefGoogle Scholar
  14. 14.
    A. K. Verma, A. G. Filoteo, D. R. Stanford, E. D. Wieben, J. T. Penniston, E. E. Strehler, R. Fischer, R. Heim, G. Vogel, S. Mathews, M. A. Strehler-Page, P. James, T. Vorherr, J. Krebs, and E. Carafoli, Complete primary structure of a human plasma membrane Ca2+ pump, J. Biol. Chem. 263:in press (1988)Google Scholar
  15. 15.
    G. E. Shull and J. Greeb, Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain, J. Biol. Chem. 263:8646 (1988)PubMedGoogle Scholar
  16. 16.
    J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105 (1982)PubMedCrossRefGoogle Scholar
  17. 17.
    D. H. MacLennan, C. J. Brandl, B. Korczak, and N. M. Green, Amino acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence, Nature. 316:696 (1985)PubMedCrossRefGoogle Scholar
  18. 18.
    K. Kawakami, T. Ohta, H. Nojima, and K. Nagano, Primary structure of the α-subunit of human Na/K-ATPase deduced from cDNA sequence, J. Biochem. (Toyko). 100:389 (1986)Google Scholar
  19. 19.
    K. M. Hager, S. M. Mandala, J. W. Davenport, D. W. Speicher, E. J. Benz, and C.W. Slayman, Amino acid sequence of the plasma membrane ATPase or neurospora crassa:deduction from genomic and cDNA sequences, Proc. Nat. Acad. Sci (USA). 83:7693 (1986)CrossRefGoogle Scholar
  20. 20.
    G. E. Shull and J. B. Lingrel, Molecular cloning of the rat stomach (H+ + K+) ATPase. J. Biol. Chem. 261:16788 (1986)PubMedGoogle Scholar
  21. 21.
    R. H. Kretsinger, Structure and evolution of calcium modulated proteins, CRC Lit. Rev. Biochem. 8:119 (1980)CrossRefGoogle Scholar
  22. 22.
    T. Sasagawa, L. H. Ericsson, K. A. Walsh, W.E. Schreiber, E.H. Fischer, and K. Titani, Complete amino acid sequence of human brain calmodulin, Biochemistry. 21:2565 (1982)PubMedCrossRefGoogle Scholar
  23. 23.
    D. G. Swan, R. S. Hall, N. Dhillon, and P. F. Leadlay, A bacterial calcium binding protein homologous to calmodulin, Nature. 329:84 (1987)PubMedCrossRefGoogle Scholar
  24. 24.
    S. Ohno, Y. Emori, S. Imajoh, H. Kawasaki, M. Kisargi, and K. Suzuki, Evolutionary origin of a calcium dependent protease by fusion of genes for a thiol protase and a calcium binding protein, Nature, 312:566 (1984)PubMedCrossRefGoogle Scholar
  25. 25.
    J. P. McManus, D. C. Watson, and M. Yaguchi, The purification and complete amino acid sequence of the 9000-Mr Ca2+-binding protein from rat placenta, Biochem. J. 235:585 (1985)Google Scholar
  26. 26.
    K. Hochstrasser, K. Illchmann, and E. Werle, The amino acid sequence of maize trypsin inhibitor, Hoppe Seyler’s Z. Physiol. Chemie. 351:721 (1970)CrossRefGoogle Scholar
  27. 27.
    F. Marashi, S. Helms, A. Shiels, S. Silverstein, D. Greenspan, G. Stein, and J. Stein, The sequence of human histone 3 as deduced from the cDNA sequence, Biochem. Cell Biol. 64:277(1985)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Ernesto Carafoli
    • 1
  • Anil K. Verma
    • 2
  • Peter James
    • 1
  • Emanuel Strehler
    • 1
  • John T. Penniston
    • 2
  1. 1.Laboratory of BiochemistrySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  2. 2.Department of Biochemistry and Molecular BiologyMayo ClinicRochesterUSA

Personalised recommendations