Skip to main content

Disregulation of Cell Calcium and Calcium-Binding Proteins in Experimental Hypertension

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 255))

Abstract

Hypertension in experimental animal models is often associated with several distinct abnormalities in calcium metabolism from the level of the cell to the whole organism. The physiological and biochemical defects in the regulation of calcium include: low serum ionized calcium, elevated serum PTH, hypercalciuria, decreased intestinal calcium absorption, altered vitamin D metabolism, decreased calcium reabsorption, altered membrane- binding, and decreased binding to intracellular calcium-binding proteins. These derangements of systemic and intracellular calcium regulation lead to the overall calcium imbalance best reflected by reduced bone density and bone mineralization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stern N, Lee DBN, Silis V., et al. Effects of high calcium intake on blood pressure and calcium metabolism in young SHR. Hypertension 1984;6:639–646.

    PubMed  CAS  Google Scholar 

  2. McCarron D, Yung NN, Ugoretz BA, Krutzik S. Disturbances of calcium metabolism in the spontaneously hypertensive rat: attenuation of hypertension by calcium supplementation. Hypertension 1981;3(Suppl 1:1162–1167.

    Google Scholar 

  3. Young EW, Hsu CH, Patel S, et al. Metabolic degradation and synthesis of calcitriol in the spontaneously hypertensive rat. Am J Physiol 1987;252:E778–E782.

    PubMed  CAS  Google Scholar 

  4. Merke J, Slotkowski A, Mann H, et al. Abnormal 1,25(OH)2D3 receptor status in genetically hypertensive rats. Kidney Int 1987;31:303.

    Google Scholar 

  5. Lau K, Chen S, Eby B. Evidence for an intestinal mechanism in hypercalciuria of the spontaneously hypertensive rat. Am J Physiol 1984;247:E625–E633.

    PubMed  CAS  Google Scholar 

  6. Hsu CH, Chen PS, Smith DE, Yang CS. Pathogenesis of hypercalciuria in spontaneously hypertensive rats. Miner Electrolyte Metab 1986;12:130–141.

    PubMed  CAS  Google Scholar 

  7. Lucas PA, Brown RC, Drueke T, Lacour B, Metz JA, McCarron DA. Abnormal vitamin D metabolism, intestinal calcium transport, and bone status in the spontaneously hypertensive rat compared with its genetic control. J Clin Invest 1986;78:221–227.

    Article  PubMed  CAS  Google Scholar 

  8. Kurtz TW, Portale AA, Morris RC. Evidence for a difference in vitamin D metabolism between spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 1986;8:1015–1020.

    PubMed  CAS  Google Scholar 

  9. Kawashima H. Altered vitamin D metabolism in the kidney of the spontaneously hypertensive rat. Biochem J 1986;237:893–897.

    PubMed  CAS  Google Scholar 

  10. Bindeis RJM, van den Brock LAM, Jongen MJM, et al. Increased plasma calcitonin levels in young spontaneously hypertensive rats: role in disturbed phosphate homeostasis. Pflugers Arch 1987;408:395–400.

    Article  Google Scholar 

  11. Lau K, Langman CB, Gafter U, et al. Increased calcium absorption in prehypertensive spontaneously hypertensive rats. J Clin Invest 1986;78:1083–1090.

    Article  PubMed  CAS  Google Scholar 

  12. Schedi HP, Miller DL, Paper JM, et al. Calcium and sodium transport and vitamin D metabolism in the spontaneously hypertensive rat. J Clin Invest 1984;73:980–986.

    Article  Google Scholar 

  13. Schedi HP, Miller DL, Horst RL, et al. Intestinal calcium transport in the spontaneously hypertensive rat: response to calcium depletion. Am J Physiol 1986; 250:G412–412G419.

    Google Scholar 

  14. Hsu CH, Yang CS, Patel SR, Stevens MG. Calcium and vitamin D metabolism in spontaneously hypertensive rats. Am J Physiol 1987;253:F712–F718.

    PubMed  CAS  Google Scholar 

  15. Young EW, Patel SR, Hsu CH. Plasma 1,25(OH)2 vitamin D3 response to parathyroid hormone, cyclic AMP, and phosphorus depletion in the spontaneously hypertensive rat. J Lab Clin Med 1986;6:562–566.

    Google Scholar 

  16. Lucas PA, Lacour B, McCarron DA, Drueke T. Disturbances of acid-base balance in the young spontaneously hypertensive rat. Clin Sci 1987;73:211–215.

    PubMed  CAS  Google Scholar 

  17. Eby B, Salvi D, Lau K. Pathophysiology and consequence of reduced PO4 excretion in the spontaneously hypertensive rat. Proc First Annu Mtg Soc Hypertens 1986;2929A.

    Google Scholar 

  18. Jacobs WR, Brazy PC, Mandel LJ. Fura-2 measurements of intracellular free calcium (Caf) in renal cortical tubules from SHR and WKY rats. Kidney Int 1987;31:350.

    Google Scholar 

  19. Llibre J, LaPointe M, Batlle DC. Fura-2 measurements at cytosolic cell Ca2+ in renal proximal tubules and circulating lymphocytes of rats with genetic hypertension. Kidney Int 1987;31:302.

    Google Scholar 

  20. Ayachi S. Increased dietary calcium lowers blood pressure in the spontaneously hypertensive rat. Metabolism 1979;28:1234–1238.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu CH, Chen PS, Caldwell RM. Renal phosphate excretion in spontaneously hypertensive and Wistar Kyoto rats. Kidney Int 1984;25:789–795.

    Article  CAS  Google Scholar 

  22. Hsu CH, Patel S, Young EW. Calcemic response to parathyroid hormone in spontaneously hypertensive rats: role of calcitriol. J Lab Clin Med 1987;110:682–689.

    PubMed  CAS  Google Scholar 

  23. McCarron DA. Impaired nephrogenous cAMP response in the spontaneously hypertensive rat. Kidney Int 1983;23:106.

    Google Scholar 

  24. Kurtz TW, Morris RC. Dietary chloride as a determinant of disordered calcium metabolism in salt-dependent hypertension. Life Sci 1985;36: 921–929.

    Article  PubMed  CAS  Google Scholar 

  25. Cirillo M, Galletti F, Corrado MF, Strazzulo P. Disturbances of renal and erythrocyte calcium handling in the Milan hypertensive strain. J Hypertens 1986;4:443–449.

    Article  PubMed  CAS  Google Scholar 

  26. Umemura S, Smythe DD, Pettinger WA. Renal adenylate cyclase in Dahl and DOC-Na hypertensive rats: defective response to parathyroid hormone with calcium leak. J Hypertens 1986;4:S291–S293.

    Article  CAS  Google Scholar 

  27. Bianchi G, Ferrari P, Salvati P, et al. A renal abnormality in the Milan hypertensive of rats and humans predisposed to essential hypertension. J Hypertens 1986;4:533–536.

    Google Scholar 

  28. Toraason MA, Wright GL. Transport of calcium by duodenum of spontaneously hypertensive rat. Am J Physiol 1981; 241:G344–G347.

    PubMed  CAS  Google Scholar 

  29. McCarron DA, Lucas PA, Shneidman RS, Drueke T. Blood pressure development of the spontaneously hypertensive rat following concurrent manipulation of the dietary Ca2+ and Na+: relation to intestinal Ca2+ fluxes. J Clin Invest 1985;76:1147–1154.

    Article  PubMed  CAS  Google Scholar 

  30. McCarron DA, Lucas P, Lacour B, Drueke T. Ca2+ efflux rate constant in isolated SHR enterocytes. Kidney Int 1986;29:252.

    Google Scholar 

  31. Drueke T, Lucas PA, Bourgouin P, et al. Changes in calcitriol status and related parameters in the young hypertensive rat (SHR). Kidney Int 1988;33:294.

    Google Scholar 

  32. Metz JA, Karanja N, McCarron DA. Characterization of bone calcium, magnesium, and density in the spontaneously hypertensive rat: differential effects of dietary calcium and sodium, (submitted).

    Google Scholar 

  33. Izawa Y, Sagara K, Kadota T, Makita T. Bone disorders in spontaneously hypertensive rat. Calcif Tissue Int 1985; 37:605–607.

    Article  PubMed  CAS  Google Scholar 

  34. Blaustein MP. Sodium ions, calcium ions, blood pressure regulation and hypertension: a reassessment and a hypothesis. Am J Physiol 1977;232: C165–C173.

    PubMed  CAS  Google Scholar 

  35. Erne P, Bolli P, Burgisser E, Buhler FR. Correction of platelet calcium with blood pressure: effect of antihypertensive therapy. N Engl J Med 1984;310, 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  36. Brushi G, Brushi ME, Caroppo M, Orlandini G, Spaggiari M, Cavatorta A. Cytoplasmic free [Ca2+] is increased in the platelets of spontaneously hypertensive rats and essential hypertensive patients. Clin Sci 1985; 68:179–184.

    Google Scholar 

  37. Le Quan Sang KH, Montenay-Garestier T, Devynck MA. Platelet cytosolic free calcium concentration in essential hypertension. Nouv Rev Fr Hematol 1985;27:279–283.

    PubMed  CAS  Google Scholar 

  38. Le Quan Sang KH, Devynck MA. Increased platelet cytosolic free calcium concentration in essential hypertension. J Hypertens 1986;4:567–574.

    Article  PubMed  CAS  Google Scholar 

  39. Lechi A, Lechi C, Bonadonna G, et al. Increased basal and thrombin-induced free calcium in platelets of essential hypertensive patients. Hypertension 1987;9:230–235.

    PubMed  CAS  Google Scholar 

  40. Baba A, Fukuda K, Kuchii M, et al. Intracellular free calcium concentration, Ca++ channel and calmodulin level in experimental hypertension in rats. Jpn Circ J 1987;51:1216–1222.

    Article  PubMed  CAS  Google Scholar 

  41. Larsen FL, Katz S, Roufogallis BD, Brooks DE. Physiologic shear stresses enhance the Ca2+ permeability of human erythrocytes. Nature (London) 1981;294:667–668.

    Article  PubMed  CAS  Google Scholar 

  42. Brushi G, Brushi ME, Caroppo M, Orlandini G, Pavarani C, Cavatorta A. Intracellular free [Ca2+] in circulating lymphocytes of spontaneously hypertensive rats. Life Sci 1984;35:535–542.

    Article  Google Scholar 

  43. Bukoski RD, Pressley MS, McCarron DA. Intracellular Ca2+ ([Ca]i) measured in single aortic myocytes from spontaneously hypertensive (SH) and normotensive Wistar Kyoto (WK) rats using fura-2. Am J Hypertens (in press).

    Google Scholar 

  44. Sugiyama T, Yoshizumi M, Takaku F, et al. The elevation of the cytoplasmic calcium ions in vascular smooth muscle cells in SHR. Measurement of the free calcium ions in single living cells by laser microfluorospectrometry. Biochem Biophys Res Comm 1986;141:340–345.

    Article  PubMed  CAS  Google Scholar 

  45. Nabika T, Velletri PA, Beaven MA, Endo J, Lovenberg W. Vasopressin-induced calcium increases in smooth muscle cells from spontaneously hypertensive rats. Life Sci 1985;37:579–584.

    Article  PubMed  CAS  Google Scholar 

  46. Bhalla RC, Webb RC, Ashley T, Brock T. Calcium fluxes, calcium binding and adenosine 3′,5′-monophosphate dependent protein kinase activity in aorta of spontaneously hypertensive and Wistar normotensive rats. Mol Pharmacol 1978;14:468–477.

    PubMed  CAS  Google Scholar 

  47. Shibata S, Kochii M, Taniguchi T. Calcium fluxes and binding in the aortic smooth muscle from the spontaneously hypertensive rat. Blood Vess 1975;12:279–289.

    CAS  Google Scholar 

  48. Zsoter TT, Wetchinsky C, Henein NF, Ho LC. Calcium kinetics of the aorta of spontaneously hypertensive rat. Cardiovasc Res 1977;11:353–357.

    Article  PubMed  CAS  Google Scholar 

  49. Cauvin C, van Breemen C. Altered 45Ca fluxes in isolated mesenteric resistance vessels from SHR. Fed Proc 1985; 44:1008.

    Google Scholar 

  50. Cauvin C, Hwang BS, Yamamoto M, van Breemen C. Effects of dihydropyuridines on tension and calcium-45 influx in isolated mesenteric resistance vessels from spontaneously hypertensive and normotensive rats. Am J Cardiol 1987; 59: 116B–122B.

    Article  PubMed  CAS  Google Scholar 

  51. Mulvany MJ, Nyborg N. An increased calcium sensitivity of mesenteric resistance vessels in young and adult spontaneously hypertensive rats. Br J Pharmacol 1980;71:585–596.

    PubMed  CAS  Google Scholar 

  52. Kozniewska E. Enhanced reactivity towards flunazinine in cerebrovascular bed of spontaneously hypertensive rats. Experientia 1988;44:221–222.

    Article  PubMed  CAS  Google Scholar 

  53. Lacour B, Roullet CM, Lucas PA, McCarron DA, Drueke T. Impaired calcium efflux in enterocytes of spontaneously hypertensive rat (SHR). Kidney Int 1988;33:300.

    Google Scholar 

  54. Aoki K Yamashita Y, Tornita N, Tazumi K, Hotta K. ATPase activity and Ca2+ binding ability of subcellular membrane of arterial smooth muscle in spontaneously hypertensive rat. Jpn Heart J 1974;15:180–181.

    Article  PubMed  CAS  Google Scholar 

  55. Webb RC, Bhalla RC. Altered calcium sequestration by subcellular fractions of vascular smooth muscle from spontaneously hypertensive rats. J Mol Cell Cardiol 1976;8:651–661.

    Article  PubMed  CAS  Google Scholar 

  56. Kwan CY, Belbeck L, Daniel EE. Abnormal biochemistry of vascular smooth muscle plasma membrane isolated from hypertensive rats. Mol Pharmacol 1980;77:137–140.

    Google Scholar 

  57. Kwan CY, Daniel EE. Arterial muscle abnormalities of hydralazine treated spontaneously hypertensive rats. Eur J Pharmacol 1982;82:1878–1890.

    Article  Google Scholar 

  58. Higaki J, Ogihara T, Kumahara Y, Bravo EL. Calmodulin levels in hypertensive rats. Clin Sci 1985;68:407–410.

    PubMed  CAS  Google Scholar 

  59. Pokudin NI, Orlov SN, Ryashsky GG, Menshikov NY, Tkachuk VA, Postnov YV. Isolation and characteristics of calmodulin from the brain of rats with spontaneous genetic hypertension. Kardiologiya 1985;25:72–77.

    PubMed  CAS  Google Scholar 

  60. Huang SL, Wen YI, Kripranycz DB, et al. Abnormality of calmodulin activity in hypertension. Evidence of the presence of an activator. J Clin Invest (in press).

    Google Scholar 

  61. Kowarski S, Cowen LA, Schachter D. Decreased content of integral membrane calcium-binding protein (IMCAL) in tissues of the spontaneously hypertensive rat. Proc Natl Acad Sci USA 1986;83:1097–1100.

    Article  PubMed  CAS  Google Scholar 

  62. Nojima H, Kishi K, Sokabe H. Organization of calmodulin genes in the spontaneously hypertensive rat. J Hypertens 1986;4(Suppl 3):S275–S277.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Rao, R.M., Young, E.W., McCarron, D.A. (1989). Disregulation of Cell Calcium and Calcium-Binding Proteins in Experimental Hypertension. In: Hidaka, H., Carafoli, E., Means, A.R., Tanaka, T. (eds) Calcium Protein Signaling. Advances in Experimental Medicine and Biology, vol 255. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5679-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5679-0_53

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5681-3

  • Online ISBN: 978-1-4684-5679-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics