Roles of Calcium in the Regulation of Tyrosine Hydroxylase

  • T. Nagatsu
  • K. Kiuchi
  • H. Hidaka
  • K. Suzuki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)


The biosynthesis of catecholamines in catecholaminergic neurons and adrenal medullary cells is mainly regulated by the pterin-dependent monooxygenase, tyrosine hydroxylase (TH) (Nagatsu et al., 1964).


Tyrosine Hydroxylase Limited Proteolysis Adrenal Medullary Cell Bovine Adrenal Medulla Muscle Myosin Light Chain Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, J., Richtand, N., Schworer, C., Kuczenski, R., and Soderling, T. 1987, Phosphorylation of purified rat striatal tyrosine hydroxylase by Ca 2+/calmodoulin-dependent protein kinase II: effect of an activator protien, J. Neurochem., 49:124l.CrossRefGoogle Scholar
  2. Chowdhury, M. and Fillenz, M., 1988, K+-Dependent stimulation of. dopamine synthesis in striatal synaptosomes is mediated by protein kinase C, J. Neurochem., 50:624.PubMedCrossRefGoogle Scholar
  3. Grima, B., Lamouroux, A., Boni, C., Julien, J.-F., Javoy-Agid, F., and Mallet, J., 1987, A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics, Nature, 326:707.PubMedCrossRefGoogle Scholar
  4. Griffith, L.C. and Schulman, H., 1988, The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+ +-dependent phosphorylation of tyrosine hydroxylase, J. Biol. Chem., 263:9542.PubMedGoogle Scholar
  5. Hidaka, H., Asano, M., Iwadare, S., Matsumoto, I., Totsuka, T., and Aoki, N., 1978, A novel vascular relaxing agent, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide which affects vascular smooth muscle actomyosin, J. Pharmac. Exp. Ther., 207:8.Google Scholar
  6. Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y., 1984, Isoquinoline-sulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C, Biochemistry, 23:5036.PubMedCrossRefGoogle Scholar
  7. Hirata, Y. and Nagatsu, T., 1985, Evidence for the involvement of Ca2+ +-calmodulin and cyclic AMP in the regulation of the tyrosine hydroyxlase system in rat striati tissue slices, Biochem. Pharmacol., 34:2637.PubMedCrossRefGoogle Scholar
  8. Ishiura, S., Murofushi, H., Suzuki, K., and Imahori, K., 1978, Studies of a calcium-activated neutral protease from chicken skeletal muscle, J. Biochem., 84:225.PubMedGoogle Scholar
  9. Kaneda, N., Kobayashi, K., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1987, Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene, Biochem. Biophys. Res. Commun., 146:971.PubMedCrossRefGoogle Scholar
  10. Kobayashi, K., Kaneda, N., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1988, Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types, J. Biochem., 103:907.PubMedGoogle Scholar
  11. Nagatsu, T., Levitt, M., and Udenfriend, S., 1964, Tyrosine hydroxylase, the initial step in norepinephrine biosynthesis. J. Biol. Chem., 239:2910.PubMedGoogle Scholar
  12. Nagatsu, T., Hirata, Y., Sawada, M., and Hidaka, H., 1985, Elucidation of regulatory mechanism of tyrosine hydroxylase and tryptophan hydroxylase by calmodulin antagonists, in: “Calmodulin Antagonists and Cellular Physiology”, H. Hidaka and D. J. Hartshorne, eds., Academic Press, New York, p. 423.Google Scholar
  13. Nagatsu, T. and Oka, K., 1986, Tyrosine 3-nionooxygenase from bovine adrenal medulla in: Meth. Enzymol. vol. 142, S. Kaufman, ed., Academic Press, New York, p. 56.Google Scholar
  14. O’Malley, K.L., Anhalt, M.J., Martin, B.M., Kelsoe, J.R., Winfield, S.L., and Ginns, E.I., 1987, Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5′ alternative splice sites responsible for multiple mRNAs, Biochemistry, 26:6910.PubMedCrossRefGoogle Scholar
  15. Saitoh, M., Ishikawa, T., Matsushima, S., Naka, M., and Hidaka, H., 1987, Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase, J. Biol. Chem., 262:7796.PubMedGoogle Scholar
  16. Togari, A., Ichikawa, S., and Nagatsu, T., 1986, Activation of tyrosine hydroxylase by Ca2+-dependent neutral protease, calpain, Biochem. Biophys. Res. Commun., 134:749.Google Scholar
  17. Yamauchi, T. and Fujisawa, H., 1981, Tyrosine 3-monooxygenase is phosphorylated by Ca2+-, calmodulin-dependent protein kinase, followed by activation by activator protein, Biochem. Biophys. Res. Commun., 100: 807PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • T. Nagatsu
    • 1
  • K. Kiuchi
    • 2
  • H. Hidaka
    • 3
  • K. Suzuki
    • 4
  1. 1.Department of BiochemistryNagoya University School of MedicineNagoya 466Japan
  2. 2.Radioisotope Center Medical DivisionNagoya University School of MedicineNagoya 466Japan
  3. 3.Department of PharmacologyNagoya University School of MedicineNagoya 466Japan
  4. 4.Tokyo Metropolitan Institute of Medical ScienceJapan

Personalised recommendations