Calcium and Polyphosphoinositide Regulation of Actin Network Structure by Gelsolin

  • Helen L. Yin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)


Receptor-mediated stimulation induces a rapid and transient reorganization of the actin filaments within the cytoskeleton of a variety of cells1–3. Although the pathways involved in mediating these changes are not well understood, several modulating proteins are likely to be involved4,5. In this paper, I will review the properties of gelsolin, a Ca2+ and polyphosphoinositide-modulated actin regulatory protein which has powerful effects on actin filament structure. Because Ca and polyphosphoinositide levels change transiently following agonist stimulation, gelsolin may have a pivotal role in modulating cytoskeletal changes.


Actin Filament Actin Binding Actin Binding Site Cell BioI Actin Gelation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Howard, T. H. and Wang, D., 1987, Calcium ionophore, phorbol ester, and chemotactic peptide-induced change in F-actin content, F-actin distribution and the shape of neutrophils, J. Clin. Invest. 79:1359.PubMedCrossRefGoogle Scholar
  2. 2.
    Sha’afi, R. I. and Molski, T. F. P., 1987, Signalling for increased cytoskeletal actin in neutrophils, Biophys. Res. Commun., 145:934.CrossRefGoogle Scholar
  3. 3.
    Sheterline, P., Rickard, J. E., Boothroyd, B. and Richards, R. C., 1986, Phorbol ester induces rapid actin assembly in neutrophil leukocytes independently of changes in [Ca2+] and pHisJ. Muscle Res. Cell Motility, 7:405.CrossRefGoogle Scholar
  4. 4.
    Stossel, T. P., et al., 1985, Non muscle actin-binding proteins. Ann. Rev. Cell. Biol., 1:353.PubMedCrossRefGoogle Scholar
  5. 5.
    Pollard, T. D., and Cooper, J. A., 1986, Actin and actin-binding proteins, A critical evaluation of mechanisms and functions, Ann. Rev. Biochem., 55:987.PubMedCrossRefGoogle Scholar
  6. 6.
    Yin, H. L., 1988, Gelsolin: calcium-and polyphosphoinositide-regulated actin-modulating protein, BioEssays, 7:176.CrossRefGoogle Scholar
  7. 7.
    Yin, H. L. and Stossel, T. P., 1979, Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein, Nature (Lond.), 281:583.PubMedCrossRefGoogle Scholar
  8. 8.
    Bryan, J. and Kurth, M., 1984, Actin-gelsolin interactions: evidence for two actin-binding sites, J. Biol. Chem., 259:7480.PubMedGoogle Scholar
  9. 9.
    Janmey, P. A., Chaponnier C, Lind S. E., Zaner K. S., Stossel T. P., and Yin, H. L., 1985, Interactions of gelsolin and gelsolin actin complexes with actin, Effects of calcium on actin nucleation, filament severing and end blocking, Biochemistry, 24:3714.PubMedCrossRefGoogle Scholar
  10. 10.
    Weeds, A. G., Harriet, H., Gratzer, W., and Gooch, J., 1986, Interactions of pig plasma gelsolin with G-actin, Eur. J. Biochem., 16:77.CrossRefGoogle Scholar
  11. 11.
    Yin, H. L. and Stossel, T. P., 1980,Ca2+ control of actin gelation, J. Biol. Chem., 255:9494.PubMedGoogle Scholar
  12. 12.
    Janmey, P. A. and Stossel, T. P., 1987, Modulation of gesolin function by phosphatidylinositol-4,5-bis phosphate, Nature, 325: 362.PubMedCrossRefGoogle Scholar
  13. 13.
    Janmey, P. A., Iida, K., Yin, H. L., and Stossel, T. P., 1987, Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin, J. Biol. Chem., 262:12228.PubMedGoogle Scholar
  14. 14.
    Chaponnier, C., Yin, H. L. and Stossel, T. P., 1987, Reversibility of gelsolin/actin interaction in macrophages, J. Exp. Med. 165:97.PubMedCrossRefGoogle Scholar
  15. 15.
    Lind, S. E., Janmey, P. A., Chaponnier, C., Herbert, T. J., and Stossel, T. P., 1987, Reversible binding of actin to gelsolin and profilin in human platelet extracts, J. Cell Biol., 105:833.PubMedCrossRefGoogle Scholar
  16. 16.
    Hartwig, J. H., Chambers, K., and Stossel, T. P., Association of gelsolin with actin filaments and cell membranes of macrophages and platelets, J. Cell Biol. (submitted).Google Scholar
  17. 17.
    Hinssen, H., Vandekerckhove, J., and Lazarides, E., 1987, Gelsolin is expressed in early erythroid progenitor cells and negatively regulated during erythropoiesis, J. Cell Biol., 105:1425.PubMedCrossRefGoogle Scholar
  18. 18.
    Cooper, J. A., Loftus, D. J., Frieden, C., Bryan, J., and Elson, E. L., Localization and mobility of gelsolin in cells, J. Cell Biol., 106:1229.Google Scholar
  19. 19.
    Lassing, I., and Lindburg, U., 1985, Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin, Nature, 318:472.CrossRefGoogle Scholar
  20. 20.
    Kwiatkowski, D. J., Janmey, P. A., Mole, J. E., and Yin, H. L., 1985, Isolation and properties of two actin binding domains in gelsolin, J. Biol. Chem., 259:15232.Google Scholar
  21. 21.
    Bryan, J., and Hwo, S., 1986, Definition of an NH2-terminal actin 2+ binding domain and a COOH-terminalCa2+-regulatory domain in human brevin, J. Cell Biol., 102:1439.PubMedCrossRefGoogle Scholar
  22. 22.
    Chaponnier, C., Janmey, P. A., and Yin, H. L., 1986, The actin filament severing domain of plasma gelsolin, J. Cell Biol. 103:1473.PubMedCrossRefGoogle Scholar
  23. 23.
    Yin, H. L., Iida, K., and Janmey, P. A., 1988, Identification of a polyphosphoinositide-modulated domain in glesolin which binds to the sides of actin filaments, J. Cell Biol., 106:805.PubMedCrossRefGoogle Scholar
  24. 24.
    Bryan, J., 1988, Gelsolin has three actin-binding sites, J. Cell Biol., 106:1553.PubMedCrossRefGoogle Scholar
  25. 25.
    Hwo, S., and J. Bryan, 1986, Immuno-identification of Ca2+-induced conformation changes in human gelsolin and brevin, J. Cell Biol. 102:227.PubMedCrossRefGoogle Scholar
  26. 26.
    Rouayrenc, J. F., Fattoum, A., Mejean, C., and Kassab, R., 1986, Characterization of the Ca2+-induced conformational changes in gelsolin and identification of interaction regions between actin and gelsolin, Biochem., 25:3859.CrossRefGoogle Scholar
  27. 27.
    Kwiatkowski, D. J., Stossel, T. P., Orkin, S. H., Mole, J. E., Colten, J. R., and Yin, H. L., 1986, Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain, Nature (Lond.), 323:455.PubMedCrossRefGoogle Scholar
  28. 28.
    Yin, H. L., Kwiatkowski, D. J., Mole, J. E., and Cole, F. S., 1985, Structure and biosynthesis of cytoplasmic and secreted variants of gelsolin, J. Biol. Chem., 29:9294.Google Scholar
  29. 29.
    Kwiatkowski, D. J., Mehl, R., and Yin, H. L., 1988, Genomic organization and biosynthesis of secreted and cytoplasmic forms of gelsolin, J. Cell Biol. 106:375.PubMedCrossRefGoogle Scholar
  30. 30.
    Kwiatkowski, D. J., Westbrook, C. A., Bruns, A. P., and Morton, C. C., 1988, Localization of gelsolin proximal to ABL on chromosome 9, Am. J. Hum. Genet., 42:565.PubMedGoogle Scholar
  31. 31.
    Lind, S. E., Smith, D. B., Janmey, P. A., and Stossel, T. P., 1986, The role of plasma gelsolin and the vitamin D-binding protein in clearing actin from the circulation, J. Clin. Invest., 78:736.PubMedCrossRefGoogle Scholar
  32. 32.
    Haddad, J. G., 1982, Human serum binding protein for vitamin D and its metabolites (DBP): Evidence that actin is the DBP binding component in human skeletal muscle. Arch. Biochem. Biophys. 213:538.PubMedCrossRefGoogle Scholar
  33. 33.
    Van Baelen, H., Bouillon, R., and De Moor, P., 1980, Vitamin D-binding protein (Gc-globulin) binds actin. J. Biol. Chem., 255:2270.PubMedGoogle Scholar
  34. 34.
    Kwiatkowski, D. J., Mehl, R., Izumo, S., Nadal-Ginard, B. and Yin, H. L., 1988, Muscle is the major source of plasma gelsolin, J. Biol. Chem., 263:8239.PubMedGoogle Scholar
  35. 35.
    Nodes, B. R., Shackelford, J. E., and Lebherz, H. G., 1987, Synthesis and secretion of the actin binding protein gelsolin by chicken gizzard muscle, J. Biol. Chem., 262:5422.PubMedGoogle Scholar
  36. 36.
    Bazari, W. L., Matsudaira, P., Wallek, M., Smeal, T., Jakes, R., and Ahmed, Y., The villin sequence and peptide map identical six homologous domains, Proc. Nat. Acad. Sci., In Press.Google Scholar
  37. 37.
    Ampe, C. and Vandekerckhove, 1987, The F-actin capping proteins of Physarum Polycephalum: cap42(a) is very similar, if not identical, to fragmin and is structurally and functionally very homologous to gelsolin: cap42(b) is Physarum actin, EMBO J., 6:4149.PubMedGoogle Scholar
  38. 38.
    Andre, E., Lottspeich, F., Schleicher, M., and Noegel, A, 1988, Severing, gelsolin and villin share a homologous sequence in regions presumed to contain F-actin severing domains, E., J. Biol. Chem., 263:722.PubMedGoogle Scholar
  39. 39.
    Pringault, E., Arpin, M., Garcia, A., Finidori, J., and Louvard, 1986, A human villin cDNa clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture, The EMBO J., 5:3119.Google Scholar
  40. 40.
    Glenney, J. R., Geislen, N., Kaulfus, P., and Weber, K., 1981, Demonstration of at least two different actin binding ssites in villin, a calcium regulated modulator of F-actin organization, J. Biol. Chem., 256:8156.PubMedGoogle Scholar
  41. 41.
    Ampe, C., Mareky, F., Lindberg, U., and Vandekerckhove, 1988, The primary structure of human platelet profilin; reinvestigation of the calf spleen profilin sequence, EMBO J., 6:4149.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Helen L. Yin
    • 1
  1. 1.Hematology-Oncology UnitMassachusetts General Hospital Harvard Medical SchoolBostonUSA

Personalised recommendations