Structural Organization of the Human Parvalbumin Gene

  • Martin W. Berchtold
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 255)


Several genes encoding Ca2+-binding proteins of the EF-hand type have been isolated from different species (for a recent review see1). Many structural features such as splice site positions with respect to the homologous amino acid sequences, are common among these genes. The original hypothesis put forward by Kretsinger2 that EF-hand type Ca2+-binding proteins evolved from a common ancestor by gene duplication could be confirmed by molecular genetic analysis and a better understanding of the genetic diversity was the result of this approach. Based on the intron/exon splice position of the genes for parvalbumin, calmodulin, myosin light chain 1 and 3, Spec1, calbindin and calretinin an evolutionary tree has been recently proposed3.


Myosin Light Chain Homologous Amino Acid Sequence Carp Muscle Homologous Promoter Transcription Regulatory Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A.R. Means, J.A. Putkey and P. Epstein, Organization and evolution of genes for calmodulin and other calcium binding proteins, in: “Calmodulin”, P. Cohen and C.B. Klee eds., pp 17–33 (1988)Google Scholar
  2. (2).
    R.H. Kretsinger, Structure and evolution of calcium-modulated proteins. CRC Crit.Rev.Biochem. 8:119 (1980)PubMedCrossRefGoogle Scholar
  3. (3).
    P.W. Wilson, J. Rogers, M. Harding, V. Pohl, G. Pattyn and D.E.M. Lawson, Structure of chick chromosomal genes for calbindin and calretinin. J.Mol.Biol. 200:615 (1988)PubMedCrossRefGoogle Scholar
  4. (4).
    C.W. Heizmann and M.W. Berchtold, Expression of parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium 8:1 (1987)PubMedCrossRefGoogle Scholar
  5. (5).
    P. Epstein, A.R. Means and M.W. Berchtold, Isolation and characterization of a rat parvalbumin gene and full length cDNA. J.Biol.Chem. 261:588 (1986)Google Scholar
  6. (6).
    M.W. Berchtold, P. Epstein, A.L. Beaudet, M.E. Payne, C.W. Heizmann and A.R. Means, Structural organization and chromosomal assignment of the parvalbumin gene. J.Biol.Chem. 262:8696 (1987)PubMedGoogle Scholar
  7. (7).
    Y. Nabeshima, Y. Fujii-Kuriyama, M. Muramatsu and K. Ogata, Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature 308:333 (1984)PubMedCrossRefGoogle Scholar
  8. (8).
    M.W. Berchtold, M.R. Celio and C.W. Heizmann, Parvalbumin in nonmuscle tissues of the rat. Quantitation and immunohistochemical localization. J.Biol.Chem. 259:5189 (1984)PubMedGoogle Scholar
  9. (9).
    M.W. Berchtold and A.R. Means, The Ca2+-binding protein parvalbumin: Molecular cloning and developmental regulation of mRNA abundance. Proc.Natl.Acad.Sci.U.S.A. 82:1414 (1985)PubMedCrossRefGoogle Scholar
  10. (10).
    M.W. Berchtold, Cloning of the rat parvalbumin gene. Methods in Enzvmol. 139:317 (1987)CrossRefGoogle Scholar
  11. (11).
    D.L. Enfield, L.H. Ericsson, H.E. Blum, E.H. Fischer and H. Neurath, Amino-acid sequence of parvalbumin from rabbit skeletal muscle. Proc.Natl.Acad.Sci.USA 72:1309 (1975)PubMedCrossRefGoogle Scholar
  12. (12).
    M.W. Berchtold, C.W. Heizmann, and K.J. Wilson, Primary structure of parvalbumin from rat skeletal muscle. Eur.J.Biochem. 127:381 (1982)PubMedCrossRefGoogle Scholar
  13. (13).
    C.J. Coffee, and R.A. Bradshaw, Carp muscle calcium-binding protein.I. Characterization of the tryptic peptides and the complete amino acid sequence. J.Biol.Chem. 248:3305 (1973)PubMedGoogle Scholar
  14. (14).
    J.P. MacManus, D.C. Watson and M. Yaguchi, The complete amino acid sequence of oncomodulin — a parvalbumin like calcium-binding protein from Morris Hepatoma 6123 tc. Eur. J. Biochem. 136:9 (1983)PubMedCrossRefGoogle Scholar
  15. (15).
    J. Gamier, D.J. Osguthorpe and B. Robson, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J.Mol.Biol. 120:97 (1978)CrossRefGoogle Scholar
  16. (16).
    R.H. Kretsinger and C.E. Nockolds, Carp muscle calcium-binding protein.II. Structure determination and general description. J.Biol.Chem. 248:3313 (1973)PubMedGoogle Scholar
  17. (17).
    T.C. Williams, D.C. Corson, B.D. Sykes and J.P. MacManus, Oncomodulin, 1H NMR and optical stopped-flow spectroscopic studies of its solution conformation and metal-binding properties. J.Biol.Chem. 262:6248 (1987)PubMedGoogle Scholar
  18. (18).
    R. Schneider, I. Gander, U. Müller, R. Mertz and E.L. Winnacker, A sensitive and rapid gel retention assay for nuclear factor I and other DNA-binding proteins in crude nuclear extracts. Nucleic Acid Res 14: 1303 (1986)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Martin W. Berchtold
    • 1
  1. 1.Institute for Pharmacology and BiochemistryUniversity of Zürich-IrchelZürichSwitzerland

Personalised recommendations