Human Adenine Phosphoribosyltransferase (APRT) Deficiency: Single Mutant Allele Common to the Japanese

  • Yuji Hidaka
  • Susan A. Tarle
  • Naoyuki Kamatani
  • William N. Kelley
  • Thomas D. Palella
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 253A)


Adenine phosphoribosyltransferase (APRT) is a purine salvage enzyme, which catalyzes the conversion of adenine to adenylic acid in the presence of phosphoribosylpyrophosphate (PRPP). In a complete APRT deficient subject, accumulated adenine is oxidized to 2, 8-dihydroxyadenine (2, 8-DHA) by xanthine oxidase. 2, 8-DHA excreted into urine precipitates and then forms a urinary stone.1 Partial deficiency develops no clinical symptoms. APRT deficiency is a common genetic disorder caused by a defective APRT gene on chromosome 16 and inherited in an autosomal recessive manner. The APRT gene, which is approximately 2.6 kb in length, consists of five exons and four introns. The frequency of heterozygotes has been estimated to be 0.4% – 1.2%.


Sickle Cell Anemia Single Nucleotide Substitution Common Genetic Disorder Polymerase Chain Reaction Procedure Enzymatic Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. H. Simmonds and K. J. Van Acker, Adenine phosphoribosyltransferase deficiency: 2, 8-dihydroxyadenine lithiasis In The Metabolic Basis of Inherited Disease, 5th edition, J. B. Stanbury, J. B. Wyngaarden, D. S. Frederickson, J. L. Goldstein, and M. S. Brown, editors. McGraw-Hill Book Co., New York, 1144 (1983).Google Scholar
  2. 2.
    Y. Hidaka, S. A. Tarle, W. N. Kelley, and T. D. Palella, Nucleotide sequence of the human APRT gene, Nucl. Acids Res. 15: 9084 (1987).CrossRefGoogle Scholar
  3. 3.
    S. Fujimori, I. Akaoka, K. Sakamoto, H. Yamanaka, K. Nishioka and N. Kamatani, Common characteristics of mutant adenine phospho-ribosyltransferases from four separate Japanese families with 2, 8-dihydroxyadenine urolithiasis associated with partial enzyme deficiency, Hum. Genet. 71: 171 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    N. Kamatani, C. Terai, S. Kuroshima, K. Nishioka, and K. Mikanagi, Genetic and clinical studies on 19 families with adenine phos-phoribosyltransferase deficiencies, Hum. Genet. 75: 163 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Hidaka, S. A. Tarie, S. Fujimori, N. Kamatani, W. N. Kelley, and T. D. Palella, Human adenine phosphoribosyltransferase deficiency. Demonstration of a single mutant allele common to the Japanese, J. Clin. Invest. 81: 945 (1987).CrossRefGoogle Scholar
  6. 6.
    R. K. Saiki, T. L. Bugawan, G. T. Horn, K. B. Mullis, and H. A. Ehrlich, Analysis of enzymatically amplified β-globin and HLA-DQ, DNA with allele-specific oligonucleotide probes, Nature 324: 163 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    J. L. Bos, E. R. Fearon, S. R. Hamilton, M. Verlaan-de Vries, J. H. van Boom, A. J. der Eb, and B. Vogelstein, Prevalence of ras gene mutations in human colorectal cancers, Nature 327: 293 (1986).CrossRefGoogle Scholar
  8. 8.
    R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim, Enzymatic amplification of β-globin analysis for diagnosis of sickle cell anemia, 230: 1350 (1985).Google Scholar
  9. 9.
    S. J. Scharf, G. T. Horn, and H. A. Erlich, Direct cloning and sequence analsysis of enzymatically amplified genomic sequences, Science 233: 1076 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    L. A. Wrischnik, R. G. Higuchi, M. Stone King, H. A. Erlich, N. Arnheim and A. C. Wilson, Length mutations in human mito-chondrial DNA: Direct sequencing of enzymatically amplified DNA, Nucl. Acids Res. 15: 529 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    G. McMahon, E. Davis, and G. N. Wogan, Characterization of c-Ki-ras oncogene alleles by direct sequencing of enzymatically amplified DNA from carcinogen-induced tumors, Proc. Natl. Acad. Sci. USA 84: 4974 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase Science 239: 487 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    C. Rosatelli, A. M. Falchi, T. Tuveri, M. T. Scalas, D. Tucci, G. Monni, and A. Cao, Prenatal diagnosis of beta-thalassaemia with the synthetic-oligomer technique, Lancet 241 (1985).Google Scholar
  14. 14.
    B. J. Conner, A. A. Reyes, C. Morin, K. Itakura, R. L. Teplitz, and R. B. Wallace, Detection of sickle cell βs-globin allele by hybridization with synthetic oligonucleotides, Proc. Natl. Acad. Sci. USA 80: 278 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    V.J. Kidd, M. S. Golbus, R. B. Wallace, K. Itakura, and S. L. C. Woo, Prenatal diagnosis of αl-antitrypsin deficiency by direct analysis of the mutation site in the gene, New Engl. J. Med. 310: 639 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    S. E. Antonarakis, P. G. Waber, S. D. Kittur, A. S. Patel, H. H. Kazazian, M. A. Mellis, R. B. Counts, G. Stamatoyannopoulos, E. J. W. Bowie, D. N. Fass, D. D. Pittman, J. M. Wozney, and J. J. Toole, Hemophilia A. Detection of molecular defects and of carriers by DNA analysis 313: 842, 1985.Google Scholar
  17. 17.
    T. Nobori, N. Kamatani, K. Mikanagi, Y. Nishida, and K. Nishioka, Establishment and characterization of B cell lines from individuals with various types of adenine phosphoribosyltransferase deficiencies. Biochem. Biophys. Res. Commun. 137: 998 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Hidaka, T. D. Palella, T. E. O’Toole, S. A. Tarie, W. N. Kelley, Human adenine phosphoribosyltransferase. Identification of allelic mutations at the molecular level as a cause of complete deficiency of the enzyme. J. Clin. Invest. 80: 1409 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Yuji Hidaka
    • 1
  • Susan A. Tarle
    • 1
  • Naoyuki Kamatani
    • 1
  • William N. Kelley
    • 1
  • Thomas D. Palella
    • 1
  1. 1.Department of Internal MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations