Skip to main content

Dynamics of Decay in Trees and Timber

  • Chapter
Biodeterioration Research 2

Abstract

Deterioration of wood is caused by a host of organisms including fungi, bacteria, insects, and marine organisms. The most common example of biodeterioration in the ecosphere is wood decay caused by fungi, the subject of this review. Decay is an interactive process of many steps leading to the structural degradation of wood and the nourishment of decay organisms and their ecological associates. Analytical techniques for understanding wood decay may be as dynamic as the decay process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ander, P., Hatakka, A. and Eriksson, K.E. (1980). Degradation of lignin and lignin-related substances by Sporotrichum pulverulentum (Phanerochaete chrysosporium). In: Lignin Biodegradation: Microbiology, Chemistry, and Potential Application Vol. II, pp. 1–15 ( T.K. Kirk, T. Higuchi, and H. Chang, eds.), CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  • Beall, F.C. and Wilcox, W.W. (1987). Relationship of acoustic emission during radial compression to mass loss from decay. Forest Prod. J., 37, 38–42.

    Google Scholar 

  • Blanchette, R.A. (1980). Wood decay: a submicroscopic view. J. For., 78, 734–737.

    Google Scholar 

  • Blanchette, R.A., Otjen, L., Effland, M.J., Eslyn, W.E. (1985). Changes in structural and chemical components of wood delignified by fungi. Wood Sci. Technol., 19, 35–46.

    Article  CAS  Google Scholar 

  • Blanchette, R.A. and Shaw, C.G. (1978). Associations among bacteria, yeasts, and basidiomycetes during wood decay. Phytopathology, 68, 631–637.

    Article  Google Scholar 

  • Boddy, L. and Rayner, A.D.M. (1983). Origins of decay in living deciduous trees: the role of moisture content and a re-appraisal of the expanded concept of tree decay. New Phytologist. 94, 623–641.

    Article  Google Scholar 

  • Davidson, R.W., Campbell, W.A., and Blaisdell, D.J. (1938). Differentiation of wood-decay fungi by their reactions on gallic or tannic acid medium. J. Agric. Res., 57, 683–695.

    CAS  Google Scholar 

  • De Groot, R.C. (1972). Growth of wood-inhabiting fungi in saturated atmospheres of monoterpenoids. Mycologia, 64, 863–870.

    Article  Google Scholar 

  • Donaldson, L.A. (1988). Ultrastructure of wood cellulose substrates during enzymatic hydrolysis. Wood Sci. Technol., 22, 33–41.

    Article  CAS  Google Scholar 

  • Dudzik, K.R. (1988). Macro-microscopic anatomy: obtaining a composite view of barrier zone formation in Acer saccharum. Inter. Assoc. Wood Anatom. Bull. (n.s.), 9, 183–186.

    Google Scholar 

  • Funt, B.V. and Bryant, E.C. (1987). Detection of internal log defects by automatic interpretation of computer tomography images. Forest Prod. J., 37, 56–62.

    Google Scholar 

  • Gilbertson, R.L. (1980). Wood-rotting fungi of North America. Mycologia, 72, 1–49.

    Article  Google Scholar 

  • Goodell, B.S., Jellison, J., and Hosli, J.P. (1988). Serological detection of wood decay fungi. Forest Prod. J., 38, 59–62.

    CAS  Google Scholar 

  • Highley, T.L., Wolter, K.E., and Evans, F.J. (1981). Polysaccharide-degrading complex produced in wood and liquid media by the brown-rot fungus Poria placenta. Wood and Fiber, 13, 265–274.

    CAS  Google Scholar 

  • Higuchi, T. (1980). Lignin structure and morphological distribution in plant cell walls. In: Lignin Biodegradation: Microbiology, Chemistry, and Potential Application Vol. I, pp. 1–20 ( T.K. Kirk, T. Higuchi, and H. Chang, eds.), CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  • Hillis, W.E. (1986). Forever Amber: a story of the secondary wood components. Wood Sci. Technol., 20, 203–227.

    Google Scholar 

  • Kirk, T.K. and Cowling, E.B. (1984). Biological decomposition of solid wood. In: The Chemistry of Solid Wood, pp. 455–487 ( R. Rowell, ed.), American Chemical Society, Washington, DC.

    Google Scholar 

  • Kozlowski, T.T. (1971). Growth and Development of Trees Vol. II. Academic Press, New York. 514 p.

    Google Scholar 

  • Liese, W. (1970). Ultrastructural aspects of woody tissue disintegration. Annual Rev. Phytopathology, 8, 231–258.

    Article  Google Scholar 

  • Luttrell, E.S. (1974). Parasitism of fungi on vascular plants. Mycologia, 66, 1–15.

    Article  Google Scholar 

  • Morrell, J.J. and Smith, S.M. (1988). Fungi colonizing redwood in cooling towers: identities and effects on wood properties. Wood Fiber Sci., 20, 243–249.

    CAS  Google Scholar 

  • Morrell, J.J. and Zabel, R.A. (1985). Wood strength and weight losses caused by soft rot fungi isolated from treated southern pine utility poles. Wood Fiber Sci., 17, 132–143.

    Google Scholar 

  • Murmanis, L., Highley, T.L., and Palmer, J.G. (1987). Cytochemical localization of cellulases in decayed and nondecayed wood. Wood Sci. Technol., 21, 101–109.

    Article  CAS  Google Scholar 

  • Murmanis, L., Highley, T.L., and Palmer, J.G. (1988). The action of isolated brown-rot cell-free culture filtrate, H202-Fe++, and the combination of both on wood. Wood. Sci. Technol., 22, 59–66.

    Article  CAS  Google Scholar 

  • Noguchi, M., Nishimoto, K., Imamura, Y., Fuji, Y., Okumura, S., and Miyauchi, T. (1986). Detection of very early stages of decay in western hemlock wood using acoustic emissions. Forest Prod. J., 36, 35–36.

    Google Scholar 

  • Palmer, J.G., Murmanis, L., and Highley, T.L. (1983a). Visualization of hyphal sheath in wood-decay Hymenomycetes. I. Brown-rotters. Mycologia, 75, 995–1004.

    Article  Google Scholar 

  • Palmer, J.G., Murmanis, L., and Highley, T.L. (1983b). Visualization of hyphal sheath in wood-decay Hymenomycetes. II. White-rotters. Mycologia, 75, 1005–1010.

    Article  Google Scholar 

  • Pearce, R.B. (1987). Antimicrobial defences in secondary tissues of woody plants. In: Fungal Infection of Plants, pp. 219–238 ( G.F. Pegg and P.G. Ayres, eds.) Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Pearce, R.B. and Woodward, S. (1986). Compartmentalization and reaction zone barriers at the margin of decayed sapwood in Acer saccharinum L. Physiol. Molec. Plant Pathol., 29, 197–216.

    Article  Google Scholar 

  • Rademacher, P., Bauch, J. and Shigo, A.L. (1984). Characteristics of xylem formed after wounding in Acer, Betula, and Fagus. Inter. Assoc. Wood Anatom. Bull. (n.s.), 5, 141–151.

    Google Scholar 

  • Savory, J.G. (1954). Breakdown of timber by Ascomycetes and Fungi Imperfecti. Ann. Appl. Biol., 41, 336–347.

    Google Scholar 

  • Scheffer, T.C. and Cowling, E.B. (1966). Natural resistance of wood to microbial deterioration. Ann. Rev. Phytopathology, 4, 147–170.

    Article  CAS  Google Scholar 

  • Seifert, K.A. (1983). Decay of wood by Dacrymycetales. Mycologia, 75, 1011–1018.

    Article  Google Scholar 

  • Shevenell, B.J. and Shortie, W.C. (1986). An ion profile of wounded red maple. Phytopathology, 76, 132–135.

    Article  CAS  Google Scholar 

  • Shigo, A.L. (1965). The pattern of decays in discolorations in northern hardwoods. Phytopathology, 55, 648–652.

    Google Scholar 

  • Shigo, A.L. (1974). Relative abilities of Phialophora melinii, Fomes connatus, and F. igniarius to invade freshly wounded tissues of Acer rubrum. Phytopathology, 64, 708–710.

    Google Scholar 

  • Shigo, A.L. (1984a). Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Ann. Rev. Phytopathology, 22, 189–214.

    Google Scholar 

  • Shigo, A.L. (1984b). Trees and discoloured wood. Inter. Assoc. Wood Anatom. Bull. (n.s., 5, 99.

    Google Scholar 

  • Shigo, A.L. (1986). A New Tree Biology. Shigo and Trees, Assoc., Durham, NH. 595 p.

    Google Scholar 

  • Shigo, A.L. and Hillis, W.E. (1973). Heartwood, discolored wood, and microorganisms in living trees. Ann. Rev. Phytopathology, 11, 197–222.

    Article  Google Scholar 

  • Shigo, A.L. and Sharon, E.M. (1970). Mapping columns of discolored and decayed tissues in sugar maple, Acer saccharum. Phytopathology, 60, 232–237.

    Article  Google Scholar 

  • Shigo, A.L. and Shortie, W.C. (1979). Compartmentalization of discolored wood in heartwood of red oak. Phytopathology, 69, 710–711.

    Article  CAS  Google Scholar 

  • Shortie, W.C. (1979a). Compartmentalization of decay in red maple and hybrid poplar trees. Phytopathology, 69, 410–413.

    Article  Google Scholar 

  • Shortie, W.C. (1979b). Detection of decay in trees. J. Arboric., 5, 226–232.

    Google Scholar 

  • Shortle, W.C. (1984). Biochemical mechanisms of discolouration, decay, and compartmentalisation of decay in trees. Inter. Assoc. Wood Anatom. Bull. (n.s.), 5, 100–104.

    Google Scholar 

  • Shortie, W.C. and Cowling, E.B. (1978). Interaction of live sapwood and fungi commonly found in discolored and decayed wood. Phytopathology, 68, 617–623.

    Article  Google Scholar 

  • Shortie, W.C. and Ostrofsky, A. (1983). Decay susceptibility of wood in defoliated fir trees related to changing physical, chemical, and biological properties. Eur. J. For. Path., 13, 1–11.

    Article  Google Scholar 

  • Shortie, W.C. and Smith, K.T. (1987). Electrical properties and rate of decay in spruce and fir wood. Phytopathology, 77, 811–814.

    Article  Google Scholar 

  • Shortie, W.C., Tattar, T.A., and Rich, A.E. (1971). Effects of some phenolic compounds on the growth of Phialophora melinii and Fomes connatus. Phytopathology, 61, 552–555.

    Article  Google Scholar 

  • Sjostrom, E. (1981). Wood Chemistry Fundamentals and Applications. Academic Press, New York. 223 p.

    Google Scholar 

  • Smith, K.T., Blanchard, R.O., and Shortie, W.C. (1981). Postulated mechanism of biological control of decay fungi in red maple wounds treated with Trichoderma harzianum. Phytopathology, 71, 496–498.

    Article  Google Scholar 

  • Smith, K.T. and Shortie, W.C. (1988). Electrical resistance and wood decay by white rot fungi. Mycologia, 80, 124–126.

    Article  Google Scholar 

  • Stubblefield, S.P. and Taylor, T.N. (1986). Wood decay in silicified gymnosperms from Antartica. Bot. Gaz., 147, 116–125.

    Article  Google Scholar 

  • Tattar, T.A., Shigo, A.L., and Chase, T. (1972). Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees. Can. J. For. Res., 2, 236–243.

    Article  Google Scholar 

  • Taylor, R., Mayfield, J.E., Shortle, W.C., Llewellyn, G.C., and Dashek, W.V. (1987). Attempts to determine whether the products of extracellular polyphenol oxidase modulate the catechol-induced bimodal growth response of Coriolus versicolor. In: Biodeterioration Research, Vol. I, pp. 43–62 ( G.C. Llewellyn and C.E. O’Rear, eds.) Plenum Publishing Co, New York.

    Google Scholar 

  • van der Kamp, B.J. (1986). Effects of heartwood inhabiting fungi on thujaplicin content and decay resistance of western redcedar ( Thuja plicata Donn. ). Wood Fiber Sci., 18, 421–427.

    Google Scholar 

  • Wilcox, W.W. (1970). Anatomical changes in wood cell walls attacked by fungi and bacteria. Bot. Rev., 36, 1–28.

    Google Scholar 

  • Wilcox, W.W. (1978). Review of literature on the effects of early stages of decay on wood strength. Wood Fiber Sci., 9, 252–257.

    Google Scholar 

  • Wilcox, W.W. (1983). Sensitivity of the “pick test” for field detection of early wood decay. Forest Prod J., 33, 29–30.

    Google Scholar 

  • Zare-Maivan, H. and Shearer, C.A. (1988). Extracellular enzyme production and cell wall degradation by freshwater lignicolous fungi. Mycologia, 80, 365–375.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Smith, K.T. (1989). Dynamics of Decay in Trees and Timber. In: O’Rear, C.E., Llewellyn, G.C. (eds) Biodeterioration Research 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5670-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5670-7_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5672-1

  • Online ISBN: 978-1-4684-5670-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics