Skip to main content

The Interaction Between Oxygen and Vascular Wall

  • Chapter
Oxygen Transport to Tissue XI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 248))

  • 189 Accesses

Abstract

During the last decade the important role of endothelium in the local control of vascular smooth muscle function has become more and more evident. In response to various chemical and physical stimuli, vascular endothelial cells synthesize and release substances which can induce changes in tone of the underlying smooth muscle cells (1,5,17,20,24,25,27). In addition, due to the uptake and the enzymatic conversion or breakdown of several circulating vasoactive substances, endothelium influences their activity in vascular smooth muscle (s. 25). Oxygen metabolites are able to influence or even disrupt these functions. Various reactive intermediates of oxygen metabolism cause characteristic changes in the metabolism of the vascular endothelial cells and induce e.g. an increased production of certain arachidonic acid metabolites (4,11,19,25). In vitro experiments suggest that oxidizing free radicals facilitate the release of the endo-thelium-derived relaxing factor(s) (EDRF) and a smooth muscle relaxation while superoxide anions depress the EDRF mediated decrease in smooth muscle tone (s. 25). Following exposure to a variety of free radicals, endothelial cell lesions, most frequently in the area of intercellular junctions, and also cytolysis were observed (11-13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Busse, U. Förstermann, H. Matsuda, and U. Pohl, The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia, Pflügers Arch. 401:77–83 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. R. Detar, Mechanism of physiological hypoxia-induced depression of vascular smooth muscle contraction, Am. J. Physiol. 238:H761–H769(1980).

    PubMed  CAS  Google Scholar 

  3. J.E. Faber, P.D. Harris, and J.G. Joshua, Microvascular response to blockade of prostaglandin synthesis in rat skeletal muscle, Am. J. Physiol. 243: H51–H60 (1982).

    PubMed  CAS  Google Scholar 

  4. B.A. Freeman, S.L. Young, and J.D. Crapo, Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen toxicity, J. Biol. Chem. 258:12534–12542(1983).

    PubMed  CAS  Google Scholar 

  5. R.F. Furchgott and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–376 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. J. Grote, K. Zimmer, and R. Schubert, Effects of severe arterial hypo-capnia on regional blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats, Pflügers Arch. 391:195–199 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. J. Grote and R. Schubert, Regulation of cerebral perfusion and PO2 in normal and edematous brain tissue, In: J.A. Loeppky, M.L. Riedesel, (eds.), Oxygen Transport to Human Tissue, Elsevier North Holland, Amsterdam, New York, Oxford, pp.169–178 (1982).

    Google Scholar 

  8. J. Grote, G. Siegel, K. Zimmer, and A. Adler, The influence of oxygen tension on membrane potential and tone of canine carotid artery smooth muscle, Adv. Exp. Med. Biol. 222:481–487 (1988).

    PubMed  CAS  Google Scholar 

  9. T.H. Hintze and G. Kaley, Prostaglandins and the control of blood flow in the canine myocardium, Circ. Res. 40:313–320 (1977).

    PubMed  CAS  Google Scholar 

  10. W.F. Jackson, Prostaglandins do not mediate arteriolar oxygen reactivity, Am. J. Physiol. 250:H1102–H1108(1986).

    PubMed  CAS  Google Scholar 

  11. R.M. Jackson, D.B. Chandler, and J.D. Fulmer, Production of arachidonic acid metabolites by endothelial cells in hyperoxia, J. Appl. Physiol. 61:584–591 (1986).

    PubMed  CAS  Google Scholar 

  12. H.A. Kontos and M.L. Hess, Oxygen radicals and vascular damage, Adv. Exp. Med. Biol. 161:365–375 (1983).

    PubMed  CAS  Google Scholar 

  13. F.S. Lamb, C.M. King, K. Harrell, W. Burkel, and R.C. Webb, Free radical-mediated endothelial damage in blood vessels after electrical stimulation, Am. J. Physiol. 252: H1041–H1046 (1987).

    PubMed  CAS  Google Scholar 

  14. W.E.M. Lands, J. Sauter, and G.W. Stone, Oxygen requirements for prostaglandin biosynthesis, Prostaglandins Med. 1:117–120 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. G. Loirand, P. Pacaud, C. Mironneau, and J. Mironneau, Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture, Pflügers Arch. 407:566–568 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. G. Markelonis and J. Garbus, Alterations of intracellular oxidative metabolism as stimuli evoking prostaglandin biosynthesis, Prostaglandins 10:1087–1106 (1975).

    Article  PubMed  CAS  Google Scholar 

  17. R.M.J. Palmer, A.G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327:524–526 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. J.D. Pickard, Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism, J. Cereb. Blood Flow Metab. 1:361–384(1981).

    Article  PubMed  CAS  Google Scholar 

  19. G.M. Rosen and B.A. Freeman, Detection of superoxide generated by endothelial cells, Proc. Natl. Acad. Sci. USA, 81:7269–7273 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. G.M. Rubanyi and P.M. Vanhoutte, Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium, J. Physiol. 364: 45–56 (1985).

    PubMed  CAS  Google Scholar 

  21. G. Siegel, Membranphysiologische Grundlagen der peripheren Gefäßregulation, Physiologie aktuell 1:31–52 (1986).

    Google Scholar 

  22. G. Siegel, R. Ehehalt, and H.P. Koepchen, Membrane potential and relaxation in vascular smooth muscle, in.: P.M. Vanhoutte, I. Leusen, (eds.), Mechanisms of Vasodilatation, Karger, Basel, pp. 56–72 (1978).

    Google Scholar 

  23. G. Siegel, G. Stock, F. Schnalke, and B. Litza, Electrical and mechanical effects of prostacyclin in the canine carotid artery, in: R.J. Gryglewski, G. Stock, (eds.), Prostacyclin and its Stable Analogue Iloprost, Springer, Berlin, pp. 143–149 (1987).

    Chapter  Google Scholar 

  24. P.M. Vanhoutte, The end of the quest?, Nature 327:459–460 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. P.M. Vanhoutte, G.M. Rubanyi, V.M. Miller, and D.S. Houston, Modulation of vascular smooth muscle contraction by the endothelium, Ann. Rev. Physiol. 48:307–320 (1987).

    Article  Google Scholar 

  26. E.P. Wei, E.F Ellis and H.A. Kontos, Role of prostaglandins in pial arteriolar response to CO2 and hypoxia, Am. J. Physiol. 238:H226–H230 (1980).

    Google Scholar 

  27. M. Yanagisawa, H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki, A novel potent vasoconstrictor peptide produced by vascular endothelial cells, Nature 332:411–415 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Grote, J., Siegel, G., Zimmer, K., Adler, A. (1989). The Interaction Between Oxygen and Vascular Wall. In: Rakusan, K., Biro, G.P., Goldstick, T.K., Turek, Z. (eds) Oxygen Transport to Tissue XI. Advances in Experimental Medicine and Biology, vol 248. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5643-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5643-1_64

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5645-5

  • Online ISBN: 978-1-4684-5643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics