Low Viscosity of Densely and Highly Polymerized Human Hemoglobin in Aqueous Solution — the Problem Of Stability

  • W. K. R. Barnikol
  • O. Burkhard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)


In case of chronic and acute tissue oxygen deficit it is of advantage to have an artificial oxygen carrying blood substitute in order to support a least temporarily blood function. From a physico-chemical point of view an artificial oxygen carrying blood substitute must meet 4 main requirements at the desired concentration.


Colloid Osmotic Pressure Human Hemoglobin Hemoglobin Solution Concern Linearity High Molecular Weight Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.K.R. Barnikol and O. Burkhard, Highly Polymerized Human Haemoglobin for Oxygen Carrying Blood Substitue, Advances in Biology and Medicine 215:129 (1987).Google Scholar
  2. 2.
    W.K.R. Barnikol and O. Burkhard, Huge Compact Soluble Molecules: A New Old Concept to Develop an Oxygen Carrying Blood Substitute, J. Biomaterial, Artificial Cells and Artificial Organs, 1988, in press.Google Scholar
  3. 3.
    W.K.R. Barnikol and H. Pötzschke, Ein stabiles Polymere aus menschlichem Hämoglobin mit niedrigem kolloidosmoti-schem Druck als Kandidat eines Sauerstofftransportierenden Blutersatzes, Hoppe-Seylers Physiologische Chemie 369: 793 (1988).Google Scholar
  4. 4.
    F. De Venuto and A. Zegna, Blood exchange with pyridoxola-ted and polymerized human hemoglobin solution, Surg., Gynecol., Obstetrics 155:342 (1982).Google Scholar
  5. 5.
    W.K.R. Barnikol and O. Burkhard, Verfahren zur Polymerisation von Hämoglobin mittels verknüpfenden Reagenzien, European Patent 85106057.4 (1985).Google Scholar
  6. 6.
    W.K.R. Barnikol and O. Burkhard, Verfahren zur Modifikation, insbesondere zur Polymerisation von Hämoglobin in vitro, German Patent P 3714351.4 (1987).Google Scholar
  7. 7.
    K. Iwasaki and Y. Iwashita, Preparation and evaluation of hemoglobin-polyethylen glycol conjugate (pyridoxalated Polyethylen glycol hemoglobin) as an oxygen-carrying resuscitation fluid, Artif. Organs 10:411 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    N. Kothe and K. Bonhard, Characterization of a modified stroma-free hemoglobin solution as an oxygen-carrying plasma substitute, Surg., Gynecol., Obstetrics 161:563 (1985).Google Scholar
  9. 9.
    A. Einstein, Eine neue Bestimmung der Moleküldimensionen, Ann. Physik 12:289 (1906).CrossRefGoogle Scholar
  10. 10.
    A. Einstein, Berichtigung zu meiner Arbeit: “Eine neue Bestimmung der Moleküldimensionen, Ann. Physik 34:591 (1911).CrossRefGoogle Scholar
  11. 11.
    Ch. Tanford, Physical Chemistry of macromolecules, John Wiley & Sons, 1967.Google Scholar
  12. 12.
    E. Antonini and M. Brunori, Hemoglobin and myoglobin in their reactions with ligands, Frontiers of Biology, Vol. 21, North-Holland Publishing Company, Amsterdamm, London, 1971.Google Scholar
  13. 13.
    E. Gendler, S. Gendler, and M.E. Nimni, Toxic reactions evoked by glutardialdehyde-fixed pericardium and cardiac valve tissue bioprosthesis, J. Biomed. Mater. Res. 18:727 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Feola, J. Simoni, P.C. Canizaro, R. Tran, G. Raschbaum, F.J. Behal, Toxicity of polymerized hemoglobin solutions, Surg., Gynecol, Obstetrics 166:211 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • W. K. R. Barnikol
    • 1
  • O. Burkhard
    • 1
  1. 1.Institut für Physiologie der UniversitätMainzBundesrepublik Deutschland

Personalised recommendations