Skip to main content

Otoacoustic Evidence for Nonlinear Behaviour in Frogs’ Hearing: Suppression but No Distortion Products

  • Chapter
Cochlear Mechanisms: Structure, Function, and Models

Part of the book series: NATO ASI Series ((NSSA))

Abstract

There is evidence that the mechanism responsible for the sharp auditory tuning in vertebrates may differ between classes. In mammals it has been shown, contrary to earlier indications, that the sharp tuning can be found at the level of the mechanical motion of the basilar membrane (Khanna and Leonard, 1982; Sellick et al., 1982; Robles et al., 1985). Such properties appear to be the result of the combination of passive basilar membrane mechanics and an active positive feedback mechanism which serves to sharpen the tuning of the basilar membrane motion. The presence of such sharp basilar membrane tuning negates the need for an additional filter within the mechanical to neural transduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Capranica, R.R. (1976) Morphology and Physiology of the Auditory system. In: Frog Neurobiology (Eds: Llinas, R. and Precht, W.) Springer-Verlag, Berlin, pp.551–575.

    Chapter  Google Scholar 

  • Capranica, R.R. and Moffat, A.J.M. (1980) Nonlinear Properties of the Peripheral Auditory System of Anurans. In: Comparative Studies of Hearing in Vertebrates (Eds. Popper, A.N. and Fay, R.R.) Springer-Verlag, N.Y. pp.139–165.

    Chapter  Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1981a) An electrical tuning mechanism in turtle cochlear haircells. J. Physiol., 312, 377–412.

    PubMed  CAS  Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1981b) Non-linearities in the responses of turtle hair cells. J. Physiol., 315, 317–338.

    PubMed  CAS  Google Scholar 

  • Evans, E.F., Wilson, J.P. and Borerwe, T.A. (1981) Animal models of tinnitus. In: Tinnitus. Ciba Found. Symp. 85. (Eds: Evered, D. and Lawrenson, G.) Pitman, London, pp.108-129.

    Google Scholar 

  • Gummer, A.W. and Klinke, R. (1983) Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus. Hear. Res., 12, 367–380.

    Article  PubMed  CAS  Google Scholar 

  • Hillery, C.M. and Narins, P.M. (1984) Neurophysiological evidence for a travelling wave in the amphibian inner ear. Science 225, 1037–1039.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, D.T. (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch. Otorhinolaryngol. 224, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, D.T. and Brown, A.M. (1986) Wideband analysis of otoacoustic intermodulation. In: Peripheral Auditory Mechanisms (Eds. Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T. and Tubis, A.) Springer-Verlag, N.Y., pp.306–313.

    Google Scholar 

  • Khanna, S.M. and Leonard, D.G.B. (1982) Basilar membrane tuning in the cat cochlea. Science 215, 305–306,.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E.R., Leverenz, E.L. and Koyama, H. (1982) The tonotopic organization of the bullfrog amphibian papilla: An auditory organ lacking a basilar membrane. J. Comp. Physiol. 145, 437–455.

    Article  Google Scholar 

  • Moffat, A.J.M. and Capranica, R.R. (1976) Effects of temperature on the response properties of auditory nerve fibers in the American toad (Bufo americanus). J. Acoust. Soc. Am. 60, S80.

    Article  Google Scholar 

  • Narins, P.M. and Hillery, C.M. (1983) Frequency coding in the inner ear of anuran amphibians. In: Hearing — Physiological Bases and Psychophysics (Eds: Klinke, R. and Hartmann, R.) Springer-Verlag, Berlin, pp.70–76.

    Google Scholar 

  • Pitchford, S. and Ashmore, J.F. (1987) An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria. Hear. Res. 27, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz, W.M. and Widin, G.P. (1984) Interaction of spontaneous otoacoustic emissions and external sounds. J. Acoust. Soc. Am. 76, 1713–1720.

    Article  PubMed  CAS  Google Scholar 

  • Robles, L., Ruggero, M.A., and Rich, N.C. (1985) Mössbauer measurements of the mechanical response to single-tone and two-tone stimuli at the base of the chinchilla cochlea. In: Peripheral Auditory Mechanisms (Eds. Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T. and Tubis, A.) Springer-Verlag, N.Y., pp.121–128.

    Google Scholar 

  • Ruggero, M.A., Kramek, B. and Rich, N.C. (1984) Spontaneous otoacoustic emissions in a dog. Hear. Res. 13, 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Sellick, P.M., Patuzzi, R. and Johnstone, B.M. (1982) Measurement of basilar membrane motion in guinea pig cochlea using the Mössbauer technique. J. Acoust. Soc. Am. 72, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Smolders, J. and Klinke, R. (1984) Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus. J. Comp. Physiol. 155, 19–30.

    Article  Google Scholar 

  • Strack, G., Klinke, R. and Wilson, J.P. (1981) Evoked cochlear mechanical responses in Caiman crocodilus. Pflugers Arch. Suppl. 391, R43.

    Google Scholar 

  • Weiss, T.F., Peake, W.T., Ling, A. and Holton, T. (1978) Which structures determine frequency selectivity and tonotopic organisation of vertebrate cochlear nerve fibres In: Evoked Electrical Activity in the Auditory Nervous System (Eds: Naunton, R. and Fernandez, C.) Academic Press, N.Y., pp.9–112.

    Google Scholar 

  • Whitehead, M.L., Wilson, J.P. and Baker, R.J. (1986) The effects of temperature on otoacoustic emission tuning properties. In: Auditory Frequency Selectivity (Eds: Moore, B.C.J. and Patterson, R.D.) Plenum, London, pp. 39–46.

    Google Scholar 

  • Wilson, J.P. (1980) Evidence for a cochlear origin for acoustic re-emission, threshold fine structure and tonal tinnitus. Hear. Res. 2, 233–252.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J.P. and Sutton, G.J. (1981) Acoustic correlates of tonal tinnitus. In: Tinnitus. Ciba Found. Symp. 85. (Eds. Evered, D. and Lawrenson, G.) Pitman, London, pp.82–101.

    Google Scholar 

  • Wilson, J.P. (1984) Otoacoustic emissions and hearing mechanisms. Rev. Laryngol. 105,(2) Suppl., 179–191.

    CAS  Google Scholar 

  • Wilson, J.P. (1985) The influence of temperature on frequency-tuning mechanisms. In: Peripheral Auditory Mechanisms (Eds: Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T. and Tubis, A.) Springer-Verlag, N.Y., pp.229–236.

    Google Scholar 

  • Wilson, J.P., Baker, R.J. and Whitehead, M.L. (1988) Level dependence of frequency tuning in human ears. In: Proceedings 8th. International Symposium on Hearing — Basic Issues in Hearing, Groningen, Academic Press, In press.

    Google Scholar 

  • Zurek, P.M. (1981) Spontaneous narrowband acoustic signals emitted by human ears. J. Acoust. Soc. Am. 69, 514–523.

    Article  PubMed  CAS  Google Scholar 

  • Zurek, P.M. and Clark, W.W. (1981) Narrow-band acoustic signals emitted by chinchilla ears after noise exposure. J. Acoust. Soc. Am. 70, 446–450.

    Article  Google Scholar 

  • Lewis, E.R. (1984) On the frog amphibian papilla. Scan. Electr. Microsc. 1984: 1899–1913.

    Google Scholar 

  • Lewis, E.R. (1987) Speculations about noise and the evolution of vertebrate hearing. Hearing Res. 25, 83–90.

    Article  CAS  Google Scholar 

  • Lewis, E.R. and Lombard, R.E. (1988) The amphibian inner ear. In: The Evolution of the Amphibian Auditory System (Ed. B. Fritsch) Wiley, N.Y., pp. 93–123.

    Google Scholar 

  • Zakon, H.H. and Wilczynski, W. (1988) The physiology of the anuran eighth nerve. In: The Evolution of the Amphibian Auditory System (Ed. B. Fritsch) Wiley, N.Y., pp. 125–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Baker, R.J., Wilson, J.P., Whitehead, M.L. (1989). Otoacoustic Evidence for Nonlinear Behaviour in Frogs’ Hearing: Suppression but No Distortion Products. In: Wilson, J.P., Kemp, D.T. (eds) Cochlear Mechanisms: Structure, Function, and Models. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5640-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5640-0_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5642-4

  • Online ISBN: 978-1-4684-5640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics