Skip to main content

Transducer Motor Coupling in Cochlear Outer Hair Cells

  • Chapter

Part of the book series: NATO ASI Series ((NSSA))

Abstract

Although many lines of evidence point to the outer hair cell as the element which controls basilar membrane mechanics, the precise nature of the interaction within the cochlear partition remains obscure. A minimum requirement of several theoretical models is that any work done by the outer hair cells on the basilar membrane has to occur synchronously with the movement of the membrane (e.g. Neely & Kim, 1986; Giesler, 1986). If so, outer hair cells must generate forces at acoustic rates. Isolated outer hair cells do indeed possess a high frequency motility (Ashmore 1987a), indicating that force is generated at rates too high to involve enzymatic intermediates, but probably based on simple physicochemical mechanisms. If outer hair cells do function to oppose the basilar membrane fluid damping such dynamic forces need to be about three orders of magnitude less than the static deflection forces of the basilar membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R. H. & Almers, W. (1976) Charge movement in the membrane of striated muscle. J.Physiol. 254, 339–360.

    PubMed  CAS  Google Scholar 

  • Ashmore, J. F. (1987a) A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J.Physiol. 388, 323–347.

    PubMed  CAS  Google Scholar 

  • Ashmore, J. F. (1987b) A mechanically evoked current in outer hair cells isolated from the guinea pig cochlea. J.Physiol. 392, 37P.

    Google Scholar 

  • Bannister, L. (1988) The cortical lattice: a highly ordered system of subsurface filaments in guinea pig cochlear outer hair cells. Prog. Br. Res.74.

    Google Scholar 

  • Chandler, W. K., Rakowski, R.F., & Schneider, M.F. (1976) A non-linear voltage-dependent charge movement in frog skeletal muscle. J.Physiol. 254, 245–284.

    PubMed  CAS  Google Scholar 

  • Dallos, P. (1985) Response characteristics of mammalian cochlear hair cells. J.Neurosci. 5, 1591–1608.

    PubMed  CAS  Google Scholar 

  • Flock, A., Flock. B and Uhlfendahl, M. (1986) Mechanisms of movement in outer hair cells and a possible structural basis. Arch Otorhinolaryngol. 243, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, D. (1986) A model of the effect of outer hair cell motility on cochlear vibrations. Hearing Res. 24, 125–132.

    Article  CAS  Google Scholar 

  • Holley, M. C. & Ashmore, J. F. (1988) On the mechanism of a high frequency force generator in outer hair cells isolated from the guinea pig cochlea. Proc Roy. Soc. Lond. B. 232, 413–429.

    Article  CAS  Google Scholar 

  • Jen, D. H. & Steele, C. R. (1987) Electrokinetic model of hair cell motility. J. Acoust. Soc. Am. 82, 1667–1678.

    Article  PubMed  CAS  Google Scholar 

  • Keynes, R.D. (1983) Voltage-gated ion channels in membranes. Proc Roy Soc., Lond. B. 220, 1–30.

    Article  CAS  Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A. & Pidoplichko, V.I. (1981) Calcium inward current and and related charge movements in in the membrane of snail neurones. J.Physiol. 310, 402–422.

    Google Scholar 

  • Neely, S.T. & Kim, D.O. (1986) A model for active elements in cochlear biomechanics. J.Acoust. Soc. Am. 79, 1472–1480.

    Article  PubMed  CAS  Google Scholar 

  • Mountain, D.C. (1986) Electromechanical properties of hair cells. In: Neurobiology of Hearing. The Cochlea. (Eds. Altschuler, R.A., Bobbin, R.P. and Hoffnan, D.W.), Raven Press, New York, pp. 77–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Ashmore, J.F. (1989). Transducer Motor Coupling in Cochlear Outer Hair Cells. In: Wilson, J.P., Kemp, D.T. (eds) Cochlear Mechanisms: Structure, Function, and Models. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5640-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5640-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5642-4

  • Online ISBN: 978-1-4684-5640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics