Skip to main content

A Three-Degree-of-Freedom Active Micromechanical Model of the Cochlear Partition

  • Chapter
Cochlear Mechanisms: Structure, Function, and Models

Part of the book series: NATO ASI Series ((NSSA))

  • 149 Accesses

Abstract

The earliest cochlear models were passive and macromechanical (e.g., Peterson and Bogert, 1950; Ranke, 1950; Zwislocki, 1950). In these models, the properties of the cochlear partition were lumped and represented by a single value of mass, stiffness, and damping for each location on the partition. Hence, we refer to these models as single degree-of-freedom (1-DOF) models. The results of calculations based on these models were in good agreement with the only measurements available at the time, those of von Békésy (1960), who worked with cochleas taken from cadavers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.B. (1980) Cochlear micromechanics — A physical model of transduction. J. Acoust. Soc. Am. 68, 1660–1670.

    Article  PubMed  CAS  Google Scholar 

  • Art, J.J., Crawford, A.C., and Fettiplace, R. (1986) Electrical resonance and membrane currents in turtle cochlear hair cells. Hearing Research 22, 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Ashmore, J.F. (1987) A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J. Physiol. 388, 323–347.

    PubMed  CAS  Google Scholar 

  • Bekesy, G. von (1960) Experiments in Hearing, McGraw Hill, New York.

    Google Scholar 

  • Bialek, W. (1983) Thermal and quantum noise in the ear. In: Mechanics of Hearing (Eds: de Boer, E. and Viergever, M.A.) Martinus Nijhoff Publishers, The Hague, pp. 185–192.

    Chapter  Google Scholar 

  • Bialek, W. and Witt, H. (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys. Lett. 10A, 173–177.

    Google Scholar 

  • Brownell, W.E., Bader, C.R., Bertrand, D., and de Ribaupierre, Y. (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227, 194–196.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1985) The mechanical properties of ciliary bundles of turtle hair cells. J. Physiol. 364, 359–380.

    PubMed  CAS  Google Scholar 

  • de Boer, E. (1983) Power amplification in an active model of the cochlea — short-wave case. J. Acoust. Soc. Am. 73, 577–579.

    Article  PubMed  Google Scholar 

  • Evans, E.F. and Wilson, J.P. (1973) The frequency selectivity of the cochlea. In: Basic Mechanisms in Hearing (Ed: Moller, A.R.) Academic Press, New York.

    Google Scholar 

  • Geisler, C.D. (1986) A model of the effect of outer hair cell motility on cochlear vibrations. Hearing Research 24, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Gold, T. (1948) Hearing II. The physical basis of action in the cochlea. Proceedings of the Royal Society of London B 135, 492–498.

    Article  Google Scholar 

  • Howard, J., and Ashmore, J.F. (1986) The stiffness of hair bundles of the frog sacculus. Hearing Research 23, 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, D.T. (1978) Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 64, 1386–1391.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, D.T. (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch. Otohinolar. 224, 37–45.

    Article  CAS  Google Scholar 

  • Khanna, S.M. and Leonard, D.G.B. (1982) Basilar membrane tuning in the cat cochlea. Science 215, 305–306.

    Article  PubMed  CAS  Google Scholar 

  • Kiang, N.Y.S., Watanabe, T., Thomas, E.C., and Clark, L.F. (1965) Discharge patterns of single fibres in the cat’s auditory nerve. In: Res. Monogr. M.I.T. 35, M.I.T. Press, Cambridge, MA.

    Google Scholar 

  • Kim, D.O. and Molnar, C.E. (1975) Cochlear Mechanics: Measurements and Models. In: The Nervous System, Vol. 3: Human Communication and Its Disorders (Editor-in-Chief: Tower, D.B.) Raven Press, New York.

    Google Scholar 

  • Kim, D.O., Neely, S.T., Molnar, C.E., and Matthews, J.W. (1980) An active cochlear model with negative damping in the partition: Comparison with Rhode’s ante-and post-mortem observations. In: Psychophysical, Physiological and Behavioural Studies in Hearing (Eds: van den Brink, G. and Bilsen, F.A.) Delft University Press, The Netherlands.

    Google Scholar 

  • Koshigoe, S. and Tubis, A. (1983) A non-linear feedback model for outer-hair-cell stereocilia and its implications for the response of the auditory periphery. In: Mechanics of Hearing (Eds: de Boer, E. and Viergever, M.A.) Martinus Nijhoff Publishers, The Hague, pp. 127–134.

    Chapter  Google Scholar 

  • Lim, D.J. (1980) Cochlear anatomy related to cochlear micromechanics, A review. J. Acoust. Soc. Am. 67, 1686–1695.

    Article  PubMed  CAS  Google Scholar 

  • Mountain, D.C., Hubbard, A.E., and McMullen T.A. (1983) Electromechanical processes in the cochlea. In: Mechanics of Hearing (Eds: de Boer, E. and Viergever, M.A.) Martinus Nijhoff Publishers, The Hague, pp. 119–126.

    Chapter  Google Scholar 

  • Neely, S.T. (1986) Micromechanics of the cochlear partition. In: Peripheral Auditory Mechanisms (Eds: Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T., and Tubis, A.) Springer-Verlag, New York, pp. 137–146.

    Google Scholar 

  • Neely, S.T. and Kim, D.O. (1983) An active cochlear model showing sharp tuning and high sensitivity. Hearing Research 9, 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, L.C. and Bogert B.P. (1950) A dynamical theory of the cochlea. J. Acoust. Soc. Am. 22, 369–381.

    Article  Google Scholar 

  • Ranke, O.F. (1950) Theory of operation of the cochlea: A contribution to the hydrodynamics of the cochlea. J. Acoust. Soc. Am. 22, 772–777.

    Article  Google Scholar 

  • Rhode, W.S. and Geisler, C.D. (1967) Model of the displacement between opposing points on the tectorial membrane and reticular lamina. J. Acoust. Soc. Am. 42, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Robles, L., Ruggero, M., and Rich, N.C. (1984) Mossbauer measurements of basilar membrane tuning curves in the chinchilla. J. Acoust. Soc. Am. 76, S35.

    Article  Google Scholar 

  • Russell, I.J. and Sellick, P.M. (1978) Intracellular studies of hair cells in the mammalian cochlea. J. Physiol. 284, 261–290.

    PubMed  CAS  Google Scholar 

  • Sellick, P.M., Patuzzi, R., and Johnstone, B.M. (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J. Acoust. Soc. Am. 72, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin, H. (1972) Innervation densities of the cochlea. Acta Otolar. 73, 235–248.

    Article  CAS  Google Scholar 

  • Strelioff, D. and Flock. A. (1984) Stiffness of sensory-cell hair bundles in the isolated guinea-pig cochlea. Hearing Research 15, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Zenner, H.P., Zimmerman, U., and Schmitt, U. (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hearing Research 18, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker, E. (1986) A hardware cochlear nonlinear preprocessing model with active feedback. J. Acoust. Soc. Am. 80, 146–153.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki, J. (1950) Theory of the acoustical action of the cochlea. J. Acoust. Soc. Am. 22, 778–784.

    Article  Google Scholar 

  • Zwislocki, J.J. (1974) A possible neuro-mechanical sound analysis in the cochlea. Acustica 31, 354–359.

    Google Scholar 

  • Zwislocki, J.J. and Kletsky, E.J. (1980) Micromechanics in the theory of cochlear mechanics. Hearing Research 2, 505–512.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Jones, K.L., Kim, D.O. (1989). A Three-Degree-of-Freedom Active Micromechanical Model of the Cochlear Partition. In: Wilson, J.P., Kemp, D.T. (eds) Cochlear Mechanisms: Structure, Function, and Models. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5640-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5640-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5642-4

  • Online ISBN: 978-1-4684-5640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics