Skip to main content

Potential Roles of Polyamine Interconversion in the Mammalian Organism

  • Chapter
Progress in Polyamine Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 250))

Abstract

Presumably many cell types have an enzymatic machinery suitable for the degradation of spermine to spermidine, and of spermidine to putrescine, but systematic studies of polyamine catabolism have not been carried out. In the case of vertebrates it is now firmly established that N1 -acetylation is the first step in this degradative transformation of one polyamine into the other. This reaction may be catalyzed either by the basal or the induced form of acetylCoA: spermidine/spermine N1 -acetyltransferase (cSAT), both of which are cytosolic enzymes (Persson et al., 1985). In the following step the N1-acetylpolyamines are oxidatively cleaved to form spermidine and putrescine, respectively (Seiler, 1981), an oxygen requiring reaction which is catalyzed by the flavine enzyme polyamine oxidase (PAO) (Hölttä, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Monem, M. M., and Ohno, K., 1977, Polyamine metabolism II: N-(monoaminoalkyl) and N-(polyaminoalkyl) acetamides in human urine, J. Pharm. Sci., 66: 1195.

    Article  PubMed  CAS  Google Scholar 

  • Antrup, H. and Seiler, N., 1980, On the turnover of polyamines spermidine and spermine in mouse brain and other organs, Neurochem. Res., 5: 123.

    Article  PubMed  CAS  Google Scholar 

  • Bachrach, U., and Seiler, N., 1981, Formation of acetylpolyamines and putrescine from spermidine by normal and transformed chick embryo fibroblasts, Cancer Res., 41: 1205.

    PubMed  CAS  Google Scholar 

  • Bardocz, S., and Weber, G., 1985, Transformation-linked increase in activities of polyamine salvage enzymes in hepatomas. Abstr. N° P2, Intern. Conf. on Polyamines in Life Sciences, Lake Yamanaka, Japan.

    Google Scholar 

  • Bloomfield, V. A., and Wilson, R. W., 1981, Interactions of polyamines with polynucleotides, in: “Polyamines in Biology and Medicine”, D. R. Morris and L. J. Marton, eds., p. 183, Marcel Dekker, New York.

    Google Scholar 

  • Bolkenius, F. N., and Seiler, N., 1986, Developmental aspects of polyamine interconversion in rat brain, Int. J. Devl. Neuroscience, 4: 217.

    Article  CAS  Google Scholar 

  • Bolkenius, F. N., and Seiler, N., 1987, The role of polyamine reutilisation in depletion of cellular stores of polyamines in non-proliferating tissues, Biochim. Biophys. Acta, 923: 125.

    Article  PubMed  CAS  Google Scholar 

  • Bolkenius, F. N., Bey, P., and Seiler, N., 1985, Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role, Biochim. Biophys. Acta, 838: 69.

    Article  PubMed  CAS  Google Scholar 

  • Chaney, J.E., Kobayashi, K., Goto, R., and Digenis, G.A., 1983, Tumor selective enhancement of radioactivity uptake in mice treated with α-difluoromethylornithine prior to administration of 14C-putrescine, Life Sci., 32: 1237.

    Article  PubMed  CAS  Google Scholar 

  • Chun, P. W., Rennert, O. M., Saffen, E. E. and Taylor, J. W., 1976, Effect of polyamines on the electrokinetic properties of red blood cells, Biochem. Biophys. Res. Commun., 69: 1095.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. B., and Fair, W. R., 1975, The selective in vivo incorporation and metabolism of radioactive putrescine in the adult male rat, J. Nucl. Med. 16: 337.

    Google Scholar 

  • Claverie, N., Wagner, J., Knödgen, B., and Seiler, N., 1987, Inhibition of polyamine oxidase improves the antitumoral effect of ornithine decarboxylase inhibitors, Anticancer Res., 7: 765.

    PubMed  CAS  Google Scholar 

  • Daune, G., Gerhart, F., and Seiler, N., 1988, 5-Fluoromethylornithine, an irreversible and specific inhibitor of L-ornithine: 2-oxoacid aminotransferase. Biochem. J., in press.

    Google Scholar 

  • Della Ragione, R., and Pegg, A.E., 1983, Studies of the specificity and kinetics of rat liver spermidine/spermine N1-acetyltrans-ferase, Biochem J., 213: 701.

    PubMed  Google Scholar 

  • Heston, W. D. W., Kadmon, D., Corey, D. F., and Fair, W. R., 1984, Differential effect of α-difluoromethylornithine on the in vivo uptake of 14C-labelled polyamines and methylglyoxal-bis-guanylhydrazone by a rat prostate derived tumor, Cancer Res., 44: 1034.

    PubMed  CAS  Google Scholar 

  • Hölttä, E., 1977, Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry, 16: 91.

    Article  PubMed  Google Scholar 

  • Ientile, R., Ruggeri, P., Russo, P., and Macaione, S., 1985, Effect of intraventricular putrescine on adenosylmethionine decarboxylase in rat hypothalamus and caudate nucleus. J. Neurochem., 44: 1315.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, F., 1978, Kinetics of polyamine synthesis and turnover in mouse fibroblasts, Biochem. J., 174: 427.

    PubMed  CAS  Google Scholar 

  • Mamont, P. S., Danzin, C., Wagner, J., Siat, M., Joder-Ohlenbusch, A.-M., and Claverie, N., 1982, Accumulation of decarboxylated S-adenosyl-L-methionine in mammalian cells as a consequence of the inhibition of putrescine biosynthesis, Eur. J. Biochem. 123: 499.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, A. E., 1986, Recent advances in the biochemistry of polyamines in eukaryotes, Biochem. J., 234: 249.

    PubMed  CAS  Google Scholar 

  • Pegg, A. E., Hibasami, H., Matsui, I., and Bethell, D. R., 1981, Formation and interconversion of putrescine and spermidine in mammalian cells. Adv. Enzyme Regul., 19: 427.

    Article  CAS  Google Scholar 

  • Pegg, A. E., Sertich, G. J., Kameji, T., Erwin, B. G., and Shirahata, A., 1986a, Regulation of polyamine metabolism by polyamines. Abstr. No 30, Intern. Conf. on Polyamines in Life Sci., Lake Yamanaka, Japan.

    Google Scholar 

  • Pegg, A. E., Coward, J. K., Talekar, R. R., and Secrist III, J. A., 1986b, Effects of certain 5′-substituted adenosines on polyamine synthesis: selective inhibitors of spermine synthase, Biochemistry, 25: 4091.

    Article  PubMed  CAS  Google Scholar 

  • Persson, L., Erwin, B. G., and Pegg, A. E., 1985, Spermidine/spermine N1-acetyltransferase: studies using a specific antiserum, in: “Recent Progress in Polyamine Research”, L. Selmeci, M. E. Brosnan, and N. Seiler, eds., p. 287, Akademiai Kiado, Budapest.

    Google Scholar 

  • Porter, C. W., and Jänne, J., 1987, Modulation of antineoplastic drug action by inhibitors of polyamine biosynthesis, in: “Inhibition of Polyamine Metabolism”, P. P. McCann, A. E. Pegg, and A. Sjoerdsma, eds., p. 203, Academic Press, Orlando.

    Google Scholar 

  • Porter, C. W., Cavanaugh, Jr., P. F., Stolowich, N., Ganis, B., Kelly, E., and Bergeron, R. J., 1985, Biological properties of N4-and N1, N8-spermidine derivatives in cultured L1210 leukemia cells, Cancer Res., 45: 2050.

    PubMed  CAS  Google Scholar 

  • Raina, A., Pajula, R.-L., Eloranta, T., and Tuomi, K., 1978, Synthesis of polyamines and S-adenosylmethionine in rat tissues and tumor cells: Effect of D, L-α-hydrazino--aminovaleric acid on cell proliferation, Adv. Polyamine Res., 1: 75.

    CAS  Google Scholar 

  • Sarhan, S., Knödgen, B., Gerhart, F., and Seiler, N., 1987, Chainfluorinated polyamines as tumor markers. I. In vivo transformation of 2, 2-difluoroputrescine into 6, 6-difluorospermidine and 6, 6-difluorospermine, Int. J. Biochem., 19: 843.

    Article  PubMed  CAS  Google Scholar 

  • Schechter, P. J., John, L., Barlow, R., and Sjoerdsma, A., 1987, Clinical aspects of inhibition of ornithine decarboxylase with emphasis on therapeutic trials of Eflornithine (DFMO) in cancer and protozoan diseases, in: “Inhibition of Polyamine Metabolism”, P. P. McCann, A. E. Pegg, and A. Sjoerdsma, eds., p. 345, Academic Press, Orlando.

    Google Scholar 

  • Seiler, N., 1981, Amide bond-forming reactions of polyamines, in: “Polyamines in Biology and Medicine” D. R. Morris, and L. J. Marton, eds., p. 127, Marcel Dekker, New York.

    Google Scholar 

  • Seiler, N., 1987a, Functions of polyamine acetylation, Can. J. Physiol. Pharmacol., 65: 2024.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, N., 1987b, Inhibition of enzymes oxidizing polyamines, in; “Inhibition of Polyamine Metabolism”, P. P. McCann, A. E. Pegg and A. Sjoerdsma, eds., p. 49, Academic Pres, Orlando

    Google Scholar 

  • Seiler, N., and Bolkenius, F. N., 1985. Polyamine reutilization and turnover in brain, Neurochem. Res., 10: 529.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, N., and Heby, O., 1988, Regulation of cellular polyamines in mammals, Acta Biochim. Biophys. Hungarica.

    Google Scholar 

  • Seiler, N., Al-Therib, M.-J., Fischer, H. A., and Erdmann, G., 1979, Dynamic and regional aspects of polyamine metabolism in the brain of trout (Salmo irideus Gibb), Int. J. Biochem., 10: 961.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, N., Bolkenius, F. N., Knödgen, B. and Mamont, P., 1980, Polyamine oxidase in rat tissues, Biochim. Biophys. Acta, 615: 480.

    PubMed  CAS  Google Scholar 

  • Seiler, N., Bolkenius, F. N. and Sarhan, S., 1981a, Formation of acetylpolyamines in the liver of fasting animals, Int. J. Biochem., 13: 1205.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, N., Koch-Weser, J., Knödgen, B., Richards, W., Tardif, C., Bolkenius, F. N., Schechter, P., Tell, G., Mamont, P., Fozard, J., Bachrach, U., and Grosshans, E., 1981b, The significance of acetylation in the urinary excretion of polyamines, Adv. Polyamine Res., 3: 197.

    CAS  Google Scholar 

  • Seiler, N., Bolkenius, F. N., Bey, P., Mamont, P. S., and Danzin, C., 1985a, Biochemical significance of inhibition of polyamine oxidase, in: “Recent Progress in Polyamine Research”, L. Selmeci, M. E. Brosnan, M. E., and N. Seiler, eds., p. 305, Akademiai Kiado, Budapest.

    Google Scholar 

  • Seiler, N., Bolkenius, F. N., and Knödgen, B., 1985b, The influence of catabolic reactions on polyamine excretion, Biochem. J., 225: 219.

    PubMed  CAS  Google Scholar 

  • Seiler, N., Sarhan, S., Knödgen, B. and Gerhart, F., 1988, Chain-fluorinated polyamines as tumor markers. II. Metabolic aspects in normal tissues, J. Cancer Res. Clin. Oncol., 114: 71.

    Article  PubMed  CAS  Google Scholar 

  • Shirahata, A. and Pegg, A. E., 1986, Increased content of an RNA for a precursor of S-adenosylmethionine decarboxylase in rat prostate after treatment with 2-difluoromethylornithine, J. Biol. Chem., 261: 13833.

    PubMed  CAS  Google Scholar 

  • Sunkara, P. S., Baylin, S. B. and Luk, G. D., 1987, Inhibitors of polyamine biosynthesis: Cellular and in vivo effects on tumor proliferation, in: “Inhibition of Polyamine Metabolism”, P.P. McCann, A. E. Pegg, and A. Sjoerdsma, eds., p. 121, Academic Press, Orlando.

    Google Scholar 

  • Van den Berg, G. A., Muskiet, F. A. J., Kingma, A. W., van der Slik, W. and Halie, M. R., 1986, Simultaneous gas-chromatographic determination of free and acetyl-conjugated polyamines in urine. Clin. Chem., 32: 1930.

    PubMed  Google Scholar 

  • Volkow, N., Goldman, S. S., Flamm, E. S., Cravioto, H., Wolf, A. P., and Brodie, J. D., 1983, Labelled putrescine as a probe in brain tumors, Science, 221: 673.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, H. M., 1987, Polyamine catabolism in mammalian cells: excretion and acetylation, Med. Sci. Res., 15: 1437.

    CAS  Google Scholar 

  • Williams-Ashman, H. G., 1985, Metabolic significance of 5′-deoxy-5′-methylthioadenosine in relation to polyamine turnover in normal and malignant mammalian cells, in: “Recent Progress in Polyamine Research”, Selmeci, L., Brosnan, M. E., and Seiler, N., eds., p. 231, Akademiai Kiado, Budapest.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Seiler, N. (1988). Potential Roles of Polyamine Interconversion in the Mammalian Organism. In: Zappia, V., Pegg, A.E. (eds) Progress in Polyamine Research. Advances in Experimental Medicine and Biology, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5637-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5637-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5639-4

  • Online ISBN: 978-1-4684-5637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics