Skip to main content

Comparative Carcinogenesis : Is There a Theoretical Approach to Inter-Species Similarity ?

  • Chapter
Biologically Based Methods for Cancer Risk Assessment
  • 59 Accesses

Abstract

Comparative carcinogenesis should be understood as the scientific activity dealing with rational analyses and syntheses of the essential differences and similarities between experimental and observed carcinogenesis (‘the mouse-to-man problem’) In this area, two extreme positions can be made out: (1) the ‘optimistic’ one (frequent among regulatory authorities), which accepts a direct “extrapolation” of all kinds of xenobiotic effects from strains of small laboratory animals to the human species, and (2)the ‘pessimistic’ position, which relies upon the argument that no animal data has any value for humans (“man is not a big rat”) .

The paper puts forward the essential mathematical concepts involved and shows some of the fallacies observed in biological applications. By comparing the enunciation of the empirical problem with the suggested dimensional-analytical one,it appears that a scientific solution cannot be envisaged without a deep and novel study of the process of carcinogenesis get rid of current beliefs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, B.N. (1983) Dietary carcinogens and anticarcinogens. Science, 221: 1256–1264

    Article  PubMed  CAS  Google Scholar 

  • Ames, B.N. (1986) Carcinogens and anticarcinogens. In:Antimutagenesis and Anticarcinogenesis Mechanisms(D.M.Shankel et al.eds.), p. 7–35. Plenum Press, New York

    Google Scholar 

  • Ames, B.N., Magaw, R., and Gold, L.S. (1987) Ranking possible carcinogenic hazards.Science, 236: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Arley, N. (1961) Theoretical analysis of carcinogenesis. Proc.4th Berkeley Symp.Math.Statist.Probab., Vol.IV, p. 1–18. Univ.California Press, Berkeley

    Google Scholar 

  • Arley, N., and Iversen, S.(1952) On the mechanism of experimental carcinogenesis.III.Further development of the hit theory of carcinogenesis. Acta Pathol.Microbiol.Scand., 30: 21–53

    Article  PubMed  CAS  Google Scholar 

  • Ashby, J. (1983) The unique role of rodents in the detection of possible human carcinogens and mutagens. Mutation Res., 115: 177–213

    Article  PubMed  CAS  Google Scholar 

  • Ashby, J. (1985) Fundamental structural alerts to potential carcinogenicity or noncarcinogenicity. Environ.Mutagen., 7: 919–921

    Article  PubMed  CAS  Google Scholar 

  • Ashby, J. (1986) The prospects for a simplified and internationally harmonized approach to the detection of possible human carcinogens and mutagens. Mutagenesis, 1: 3–16

    Article  PubMed  CAS  Google Scholar 

  • Ashby, J. (1988) Computer assisted short-term test battery design: Some questions. Environ.Molec.Mutagen., 11: 443–448

    Article  Google Scholar 

  • Ashby, J., and Purchase, I.F.H. (1985) Significance of the genotoxic activities observed in vitro for 35 of 70 NTP noncarcinogens. Environ.Mutagen., 7: 747–758

    Article  PubMed  CAS  Google Scholar 

  • Ashby, J., and Tennant, R.W. (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemical tests in rodents by the U.S.NCI/NTP. Mutation Res., 204: 17–115

    Article  PubMed  CAS  Google Scholar 

  • Balâz, S., Sturdík, E., Rosenberg, M., Augustín, J., and Skaâra, B.(1988) Kinetic of drug activities as influenced by their physicochemical properties:Antibacterial effects of alkylating 2-furyl ethylenes. J.Theor.Biol., 131: 115–134

    Google Scholar 

  • Barenblatt, G.I. (1987) Dimensional Analysis. Gordon and Breach, New York

    Google Scholar 

  • Barrett, J.C., Oshimura, M., Tanaka, N., and Tsutsui, T. (1987) Genetic and epigenetic mechanisms of presumed nongenotoxic carcinogens. In:Nongenotoxic Mechanisms in Carcinogenesis (B.E. Butterworth, T.J.Slaga eds.), p.311–324. Cold Spring Harbor Lab.

    Google Scholar 

  • Benigni, R., and Giuliani, A (1987) Carcinogenicity, mutagenicity, toxicity and chemical structure in a homogeneous data base. In:Drug Design and Toxicology(D.Hadzi, B.Jerman-Blazic eds.), p. 346–348. Elsevier, Amsterdam

    Google Scholar 

  • Boxenbaum, H. (1980), Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance extrapolation of data to bezodiazepines and phenytoin. J.Pharmacokin.Biopharm., 8: 165–176

    Article  CAS  Google Scholar 

  • Boxenbaum, H. (1982) Comparative pharmacokinetics of benzodiazepines in dog and man. J.Pharmacokin.Biopharm., 10: 411–426

    Article  CAS  Google Scholar 

  • Boxenbaum, H. (1983) Evolutionary biology, animal behavior, fourth-dimensional space, and the raison d’être of drug metabolism and pharmacokinetics. Drug.Metab.Rev., 14: 1057–1097

    Article  PubMed  CAS  Google Scholar 

  • Boxenbaum, H. (1984), Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug.Metab.Rev., 15: 1071–1121

    Article  PubMed  CAS  Google Scholar 

  • Boxenbaum, H., and Ronfeld, R. (1983), Interspecies pharmacokinetic scaling and the Dedrick plots. Amer.J.Physiol., 245: R768 - R774

    PubMed  CAS  Google Scholar 

  • Brockman, H.E., and DeMarini, D.M. (1988) Utility of short-term tests for genetic toxicity in the aftermath of the NTP’s analysis of 73 chemicals. Environ.Molec.Mutagen., 11: 421–435

    Article  CAS  Google Scholar 

  • Brusick, D. (1983) Evaluation of chronic rodent bioassays and Ames assay tests as accurate models for predicting human carcinogens. In:Application of Biological Markers to Carcinogen Testing(H.A.Milman, S.Sell eds.), p. 153–163. Plenum Press, New York

    Google Scholar 

  • Brusick, D. (1988) Evolution of testing strategies for genetic toxicity. Mutation Res., 205: 69–78

    Article  PubMed  CAS  Google Scholar 

  • Butler, J.P., Feldman, H.A., and Fredberg, J.J. (1987) Dimensional analysis does not determine a mass exponent for metabolic scaling. Amer.J.Physiol., 253: R195 - R199

    PubMed  CAS  Google Scholar 

  • Calabrese, E.J. (1984) Suitability of animal models for predictive toxicology:Theoretical and practical considerations. Drug Metab.Rev., 15: 505–523

    Article  PubMed  CAS  Google Scholar 

  • Carnap, R. (1966) An Introduction to the Philosophy of Science. ( Ed.by M.Gardner) Basic Books, New York

    Google Scholar 

  • Claxton, L.D., Stead, A.G., and Walsh, D. (1988) An analysis by chemical class of Salmonella mutagenicity tests as predictors of animal carcinogenicity. Mutation Res., 205: 197–225

    Article  PubMed  CAS  Google Scholar 

  • Clayson, D.B. (1985) Problems in interspecies extrapolation. In: Toxicological Risk Assessment(D.B.Clayton, D.Krewski, I.Munro eds.), Vol. I, p. 105–122. CRC Press, Boca Raton

    Google Scholar 

  • Clayson, D.B. (1987) The need for biological risk assessment in reaching decisions about carcinogens. Mutation Res., 185: 243–269

    Article  PubMed  CAS  Google Scholar 

  • Crow, J.F. (1986) Population consequences of mutagenesis and antimutagenesis. In:Antimutagenesis and Anticarcinogenesis Mechanisms(D.M.Shankel et al.eds.), p. 519–530. Plenum Press, New York

    Google Scholar 

  • Crump, K.S., and Howe, R.B(1985) A review of methods for calculating statistical confidence limits in low dose extrapolation. In:Toxicological Risk Assessment(D.B.Clayson, D.Krewski, I. Munro eds.), Vol.I, p.187–203. CRC Press, Boca Raton

    Google Scholar 

  • Dawe, C.J. (1983) Comparative neoplasia. In:Cancer Medicine(J.F. Holland, E.Frei III eds.), p.209–256.2nd ed. Lea & Febiger, Philadelphia

    Google Scholar 

  • De Bono, E. (1971) Practical Thinking. J.Cape, New York

    Google Scholar 

  • Dedrick, R.L. (1973) Animal scale-up. J.Pharmacokin.Biopharm., l: 435–461

    Google Scholar 

  • Dedrick, R.L., Bischoff, K.B., and Zaharko, D.S. (1970), Interspecies correlation of plasma concentration history of methotrexate. Cancer Chemother.Rep., Part 1, 54: 95–101

    Google Scholar 

  • Dedrick, R.L., Forester, D.D., Cannon, J.N., Edareen, S.M., and Mellett, L.B. (1973) Pharmacokinetics of 1-ß-D-arabinofuranosylcytosine ( Ara-C)deamination in several species. Biochem.Pharmacol., 22: 2405–2417

    Article  PubMed  CAS  Google Scholar 

  • Diaconis, P. (1981) Magical thinking in the analysis of scientific data. Ann.N.Y.Acad.Sci., 364: 236–244

    Article  Google Scholar 

  • Dow, J., Laquais, B., Tisne-Versailles, J., Pourrias, B., and Strolin Benedetti, M. (1982) Pharmacokinetics and pharmacodynamics of the antiarrhytmic compound MD 750819 in dogs with experimentally induced arrhytmias. J.Pharmacokin.Biopharm., 10: 283–296

    Google Scholar 

  • Dow, J., Laquais, B., Tisne-Versailles, J., Pourrias, B., and Strolin Benedetti, M. (1982) Pharmacokinetics and pharmacodynamics of the antiarrhytmic compound MD 750819 in dogs with experimentally induced arrhytmias. J.Pharmacokin.Biopharm., 10: 283–296

    Google Scholar 

  • Dunkel, V.G. (1983) Biological significance of end points. Ann. N.Y.Acad.Sci., 407: 34–41

    Article  PubMed  CAS  Google Scholar 

  • Economos, A.C. (1982) On the origin of biological similarity. J.Theor.Biol., 94: 25–60

    Article  Google Scholar 

  • Efron, E. (1984) The Apocalyptics.Cancer and the Big Lie. Simon and Schuster, New York

    Google Scholar 

  • Ehrenberg, A.S.C. (1968) The elements of lawlike relationships. J.Roy.Statist.Soc.Ser.A, 131: 280–302

    Article  Google Scholar 

  • Ehrenberg, L., Moustacchi, E., Osterman-Golkar, S., and Ekman, G. (1983) Dosimetry of genotoxic agents and dose-response relationships of their effects. Mutation Res., 123: 121–182

    Article  PubMed  CAS  Google Scholar 

  • Frierson, M.R., Klopman, G., and Rosenkranz, H.S. (1986) Structure-activity relationships(SARs)among mutagens and carcinogens: A review. Environ.Mutagen., 8: 283–327

    Article  PubMed  CAS  Google Scholar 

  • Garattini, S. (1982) Concluding remarks:Extrapolation of toxicological data from animals to man. In:Animals in Toxicological Research(I.Bartosek, A.Guaitani, E.Pacei eds.), p. 201–208. Raven Press, New York

    Google Scholar 

  • Garattini, S. (1983) Notes on xenobiotic metabolism. Ann.N.Y. Acad.Sci., 407: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Garner, R.C. (1985) Assessment of carcinogen exposure in man. Carcinogenesis, 6: 1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Gillette, J.R. (1982) The problem of chemically reactive metabolites. Drug.Metab.Rev., 13: 941–960

    Article  PubMed  CAS  Google Scholar 

  • Gillette, J.R. (1985) Biological variation:The unsolvable problem in quantitative extrapolations from laboratory animals and other surrogate systems to human populations. In:Risk Quantitation and Regulatory Policy(D.G.Hoel, R.A.Merrill, F.P. Perera eds.), p.199–209. Cold Spring Harbor Lab.

    Google Scholar 

  • Gillette, J., Weisburger, E.K., Kraybill, H., and Kelsey, M.(1985) Strategies for determining the mechanisms of toxicity. J.Toxicol.-Clin.Toxicol., 23: 1–78

    Google Scholar 

  • Grasso, P., and Crampton, P.F. (1972) The value of the mouse in the carcinogenicity testing. Food Cosmet.Toxicol., 10: 418–422

    PubMed  CAS  Google Scholar 

  • Guillier, C.L. (1972) Evaluation of the internal exposure due to various administered dosages of urethane to mice. Proc.6th Berkeley Symp.Math.Statist.Probab., Vol.IV, p. 309–315. Univ. California Press, Berkeley

    Google Scholar 

  • Hart, R.W., and Fishbein, L. (1985), Interspecies extrapolation of drug and genetic toxicity data. In:Toxicological Risk Assessment(D.B.Clayson, D.Krewski, I.Munro eds.), Vol.I, p. 3–40. CRC Press, Boca Raton

    Google Scholar 

  • Haseman, K.K. (1983) Patterns of tumor incidence in two-year cancer bioassay feeding studies in Fisher 344 rats. Fund.Appl.Toxicol. 3: 1–9

    Article  CAS  Google Scholar 

  • Haynes, R.H. (1986), Introduction:Molecular basis of genomic stability and change. In:Antimutagenesis and Anticarcinogenesis Mechanisms(D.M.Shankel et al.eds.), p. 245–249. Plenum Press, New York

    Google Scholar 

  • Heddle, J.A. (1988) Prediction of chemical carcinogenicity from in vitro genetic toxicity. Mutagenesis 3: 287–291

    Article  PubMed  CAS  Google Scholar 

  • Hodgson, E. (1979) Comparative aspects of the distribution of cytochrome P-450 dependent mono-oxygenase systems:An overview. Drug.Metab.Rev., 10: 15–33

    Article  PubMed  CAS  Google Scholar 

  • Iversen, S., and Arley, N. (1950) On the mechanism of experimental carcinogenesis. Acta Pathol.Microbiol.Scand., 27: 773–803

    Article  CAS  Google Scholar 

  • Jeffery, A.M. (1987) DNA modification by chemical carcinogens. In:Mechanisms of Cellular Transformation by Carcinogenic Agents(D.Grunberger, S.P.Goff eds.), p. 33–71. Pergamon Press, Oxford

    Google Scholar 

  • Kauffman, S.L. (1974) Kinetics of alveolar epithelial hyperplasia in lungs of mice exposed to urethane. Lab.Invest., 30: 170–175

    PubMed  CAS  Google Scholar 

  • Kauffman, S.L. (1976) Autoradiographic study of type II-cell hyperplasia in lungs of mice chronically exposed to urethane. Cell Tissue Kinet., 9: 489–497

    PubMed  CAS  Google Scholar 

  • Kendall, M.G. (1968) On the future of statistics–a second look. J.Roy.Statist.Soc.Ser.A, 131: 182–192

    Article  Google Scholar 

  • Klonecki, W. (1979) A one-branching model of urethane carcinogenesis and its qualitative consistency with empirical findings. Math.Biosci., 43: 23–39

    Article  CAS  Google Scholar 

  • Knudson, A.G. (1987) Genetic oncodemes and antioncogenes. In:Biochemical and Molecular Epidemiology of Cancer(C.C.Harris ed.), p. 127–134. A.R.Liss, New York

    Google Scholar 

  • Kuhn, T.S. (1961) The function of measurement in modern physical science. Isis, 52:161–190 (Reproduced in “The Essential Tension”, Univ.of Chicago Press, Chicago, 1977 )

    Google Scholar 

  • Kyburg, H.E. (1984) Theory and Measurement. Cambridge Univ.Press, Cambridge

    Google Scholar 

  • Langhaar, H.L. (1951) Dimensional Analysis and Theory of Models. Wiley, New York

    Google Scholar 

  • Loury, D.J., Goldsworthy, T.L., and Butterworth, B.E. (1987) The value of measuring cell replication as a predictive index of tissue-specific tumorigenic potential. In:Nongenotoxic Mechanisms in Carcinogenesis(B.E.Butterworth, T.J.Slaga eds.), p.119–136. Cold Spring Harbor Lab.

    Google Scholar 

  • Marcus, A.H. (1975) Power laws in compartmental analysis.I, II. Math.Biosci., 23: 337–350

    Article  Google Scholar 

  • Marcus, A.H. (1975) Power laws in compartmental analysis.I, II. Math.Biosci., 35: 27–45

    Article  Google Scholar 

  • Meredith, P.A., Kelman, A.W., Elliott, H.L., and Reid, J.L. (1983) Pharmacokinetic and pharmacodynamic modelling of trimazosin and its major metabolite. J.Pharmacol.Biopharm., 11:323–335

    CAS  Google Scholar 

  • Meredith, P.A., Kelman, A.W., Elliott, H.L., and Reid, J.L. (1983) Pharmacokinetic and pharmacodynamic modelling of trimazosin and its major metabolite. J.Pharmacol.Biopharm., 11:323–335

    CAS  Google Scholar 

  • Mordenti, J. (1986) Dosage regimen design for pharmaceutical studies conducted in animals. J.Pharm.Sci., 75: 852–857

    Article  PubMed  CAS  Google Scholar 

  • Natarajan, A.T., and Obe, G. (1986) How do in vivo mammalian assays compare to in vitro assays in their ability to detect muta-gens ? Mutation Res., 167: 189–201

    Article  PubMed  CAS  Google Scholar 

  • Nebert, D.W., and Gonzalez, F.J. (1987) P450 genes:structure, evolution, and regulation. Ann.Rev.Biochem., 56: 945–993

    Article  PubMed  CAS  Google Scholar 

  • Neyman, J. (1974) A view of biometry:An interdisciplinary domain concerned with chance mechanisms operating in living organisms;illustration:urethan carcinogenesis. In:Reliability and Biometry(F.Proschan, R.J.Serfling eds.), p. 183–201. SIAM, Philadelphia

    Google Scholar 

  • Neyman, J. (1982) Avenue to understanding the mechanism of radiation effects:Extended serial sacrifice experimental methodology. In:Probability Models and Cancer(L.LeCam, J.Neyman eds.), p. 45–60. North-Holland, Amsterdam

    Google Scholar 

  • Neyman, J., and Scott, E.L. (1967) Statistical aspect of the problem of carcinogenesis. Proc.Sth Berkeley Symp.Math.Statist.Probab. Vol.IV, p. 745–776. Univ.of California Press, Berkeley

    Google Scholar 

  • Niiniluoto, I. (1985) Paradigms and problem-solving in operations research. In:Logic of Discovery and Logic of Discourse(J. Hintikka, F.Vandamme eds.), p. 145–159. Plenum Press, New York

    Google Scholar 

  • Oser, B.L. (1981) The rat as a model for human toxicological evaluation. J. Toxicol.Environ.Health, 8: 521–534

    Article  PubMed  CAS  Google Scholar 

  • Paalzow, L.K. (1984), Integrated pharmacokinetic-dynamic modeling of drugs acting on the CNS. Drug Metab.Rev., 15: 383–400

    Article  PubMed  Google Scholar 

  • Parodi, S., Taningher, M., and Santi, L. (1988) Utilization of the quantitative component of positive and negative results of short-term tests. Mutation Res., 205: 283–294

    Article  PubMed  CAS  Google Scholar 

  • Polany, M. (1958) Personal Knowledge. Routledge & Kegan, London

    Google Scholar 

  • Pólya, G. (1945) How to Solve It.A New Aspect of Mathematical Method. Princeton Univ.Press, Princeton

    Google Scholar 

  • Prothero, J. (1986) Methodological aspects of scaling in biology. J.Theor.Biol., 118: 259–286

    Article  PubMed  CAS  Google Scholar 

  • Rahmani, R., Richard, B., Fabre, G., and Cano, J.-P. (1988) Extrapolation of preclinical pharmacokinetic data to therapeutic drug use. Xenobiotica, 18 (Suppl.1): 71–88

    PubMed  CAS  Google Scholar 

  • Rall, D.P. (1979) The role of laboratory animal studies in estimating carcinogenic risks for man. In:Carcinogenic Risks. Strategies for Intervention(W.Davis, C.Rosenfeld eds.), p. 179–189. Intern.Agency Res.Cancer, Lyon

    Google Scholar 

  • Rodricks, J.V., and Tardiff, R.G. (1983) Biological bases for risk assessment. In:Safety Evaluation and Regulation of Chemicals (F.Homburger ed.), p. 77–84. Karger, Basel

    Google Scholar 

  • Rosen, R. (1978) Dynamical similarity and the theory of biological transformations. Bull.Math.Biol., 40: 549–570

    PubMed  CAS  Google Scholar 

  • Rosen, R. (1983) Role of similarity principles in data extrapolation. Amer.J.Physiol., 244:R591–R599

    Google Scholar 

  • Rosenkranz, H.S., and Ennever, F.K. (1988) Quantifying genotoxicity and non-genotoxicity. Mutation Res., 205: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Ruelius, H.W. (1987) Extrapolation from animals to man:predictions, pitfalls and perspectives. Xenobiotica, 17: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Savageau, M.A. (1979) Allometric morphogenesis of complex systems: Derivation of the basic equations from first principles. Proc.Natl.Acad.Sci.USA, 76: 6023–6025

    Article  PubMed  CAS  Google Scholar 

  • Savageau, M.A., Voit, E.O., and Irvine, D.H. (1987) Biochemical systems theory and metabolic control theory.1, 2. Math.Biosci., 86:127–145; 147–169

    Google Scholar 

  • Sawada, Y., Hanano, M., Sugiyama, Y., and Iga, T. (1984) Prediction of the disposition of S-lactam antibiotics in humans from pharmacokinetic parameters in animals. J.Pharmacokin.Biopharm., 12: 241–261

    Article  CAS  Google Scholar 

  • Schmidt-Nielsen, K. (1970) Energy metabolism, body size, and problems of scaling. Fed.Proc., 29: 1524–1532

    PubMed  CAS  Google Scholar 

  • Schneiderman, M.A., Mantel, N., and Brown, C.C. (1975) From mouse to man-or how to get from the laboratory to Park Avenue and 59th Street. Ann.N.Y.Acad.Sci., 246: 237–248

    Article  PubMed  CAS  Google Scholar 

  • Schoenfelder, C.A., and Hoel, D.G. (1979) Properties of the Neyman-Scott carcinogenesis model at low dose rates. Math.Biosci., 45: 227–246

    Article  Google Scholar 

  • Schulte-Hermann, R. (1974), Induction of liver growth by xenobiotic compounds and other stimuli. Crit.Rev.Toxicol., 3: 97–158

    Article  CAS  Google Scholar 

  • Sheiner, L.B., Stanski, D.R., Vozeh, S., Miller, R.D., and Ham, J.(1979) Simultaneous model of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin.Pharmacol.Ther., 25: 358–371

    Google Scholar 

  • Shelby, M.D., Zeiger, E., and Tennant, R.W. (1988) Commentary on the status of short-term tests for chemical carcinogens. Environ. Molec.Mutagen., 11: 437–441

    Article  CAS  Google Scholar 

  • Shimkin, M.B., Wieder, R., Marzi, D., Gubareff, N., and Suntzeff, V. (1967) Lung tumors in mice receiving different schedules of urethane. Proc.5th Berkeley Symp.Math.Statist.Probab., Vol.IV, p. 707–719. Univ.of California Press, Berkeley

    Google Scholar 

  • Smith, R.J. (1980) Rethinking allometry. J.Theor.Biol., 87: 97–111

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.L. (1988) The role of metabolism and disposition studies in the safety assessment of pharmaceuticals. Xenobiotica, 18 (Suppl.1): 89–96

    PubMed  CAS  Google Scholar 

  • Smolen, V.F., Turrie, B.D., and Weigand, W.A. (1972) Drug input optimization:Bioavailability-effected time-optimal control of multiple simultaneous, pharmacological effects and their interrelationships. J.Pharm.Sci., 61: 1941–1952

    Article  PubMed  CAS  Google Scholar 

  • Stahl, W.R. (1963) The analysis of biological similarity. Adv. Biol.Med.Phys., 9:355–464

    PubMed  CAS  Google Scholar 

  • Tautu, P. (1975) Some examples of probability models in cancer epidemiology. Bull.Intern.Statist.Inst., 46 (Book 2): 144–158

    Google Scholar 

  • Teichmann, B., and Schramm, T. (1979) ‘Human’ and ’animal’ carcinogens. In:Carcinogenic Risk.Strategies for Intervention(W. Davis, C.Rosenfeld eds.), p. 203–206. IARC, Lyon

    Google Scholar 

  • Tennant, R.W.et al. (1987) Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science, 236: 933–941

    Article  PubMed  CAS  Google Scholar 

  • Tennant, R.W., Stasiewicz, S., and Spalding, J.W. (1986) Comparison of multiple parameters of rodent carcinogenicity and in vitro genetic toxicity. Environ.Mutagen., 8: 205–227

    Article  PubMed  CAS  Google Scholar 

  • Upton, R.N., Mather, L.E., Runciman, W.B., Nancarrow, C., and Carapetis, R.J. (1988) The use of mass balance principles to describe regional drug distribution and elimination. J.Pharmacokin. Biopharm., 16: 13–29

    Article  CAS  Google Scholar 

  • Vesell, E.S. (1987) Pharmacogenetic differences between humans and laboratory animals:implications for modelling. In:Human Risk Assessment-The Role of Animal Selection and Extrapolation(M.V.Roloff et al., eds.), p. 229–237. Taylor & Francis, London

    Google Scholar 

  • Weinstein, H., Osman, R., Topiol, S., and Green, J.P. (1981) Quantum chemical studies on molecular determinants for drug action. Ann.N.Y.Acad.Sci., 367: 434–451

    Article  PubMed  CAS  Google Scholar 

  • White, M.R. (1972) Studies of the mechanism of induction of pulmonary adenomas in mice. Proc.6th Berkeley Symp.Math.Statist. Probab., Vol.IV, p. 287–307. Univ.California Press, Berkeley

    Google Scholar 

  • White, M., Grendon, A., and Jones, H.B. (1967) Effects of urethane dose and time patterns on tumor formation. Proc.5th Berkeley Symp.Math.Statist.Probab., Vol.IV, p. 721–743. Univ.California Press, Berkeley

    Google Scholar 

  • Williams, G.M. (1987) DNA reactive and epigenetic carcinogens. In:Mechanisms of Environmental Carcinogenesis(J.C.Barrett ed.), Vol.I, p. 113–127. CRC Press, Boca Raton

    Google Scholar 

  • Wilson, R., and Crouch, E.A.C. (1987) Risk assessment and comparisons:An introduction. Science, 236: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Wise, M.E. (1974), Interpreting both short-and long-term power laws in physiological clearance curves. Math.Biosci., 20: 327–337

    Article  Google Scholar 

  • Wise, M.E., Osborn, S.B., Anderson, J., and Tomlinson, R.W.S. (1968) A stochastic model for turnover of radiocalcium based on the observed power laws. Math.Biosci., 2: 199–224

    Article  CAS  Google Scholar 

  • Yates, F.E. (1979) Comparative physiology:compared to what ? Amer.J.Physiol., 237: R1 - R2

    Google Scholar 

  • Yates, F.E., and Kugler, P.N. (1986) Similarity principles and intrinsic geometries:Contrasting approaches to interspecies scaling. J.Pharm.Sci., 75: 1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Ziegel, E.R., and Gorman, J.W. (1980) Kinetic modelling with multi-response data. Technometrics, 22: 139–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Tautu, P. (1989). Comparative Carcinogenesis : Is There a Theoretical Approach to Inter-Species Similarity ?. In: Travis, C.C. (eds) Biologically Based Methods for Cancer Risk Assessment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5625-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5625-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5627-1

  • Online ISBN: 978-1-4684-5625-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics