Skip to main content
  • 58 Accesses

Abstract

One of the fundamental problems in the cancer risk assessment area is the extrapolation of observed experimental results between animal species and man. Lacking detailed information on interspecies differences, it is frequently assumed that experimental results can be extrapolated between species when administered dosage is standardized as either mg/kg body weight per day (body weight scaling) or mg/m2 per day (surface area scaling). Several investigators have argued for the efficacy of one or the other of these procedures (Pinkel, 1958; Freireich et al., 1966; Crouch and Wilson, 1978; Hoel, 1979; Crump and Guess, 1980; Hogan and Hoel, 1982; MRI, 1986; FASEB, 1986; Travis and White, 1988). It is well recognized that neither of these extrapolation procedures will be exactly correct for all compounds and that when species-specific data are available, they should be used in risk assessment. In their absence, body weight or surface area extrapolations are used with the explicit knowledge that they are only approximately correct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph, E. F. (1949). Quantitative relations in the physiological constitutions of mammals, Science 109: 579–585.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, M. E. (1987). Tissue Dosimetry in Risk Assessment, or What’s the Problem Here Anyway? in: Drinking Water and Health, Volume 8, Pharmacokinetics in Risk Assessment. National Academy Press, Washington, DC.

    Google Scholar 

  • Andersen, M. E., Clewell, H. J. III, Gargas, M. L., Smith, F. A., and Reitz, R. H. (1987). Physiologically based pharmacokinetics and the risks assessment process for methylene chloride, Toxicol. Appl. Pharmacol. 87: 185–205.

    Google Scholar 

  • Arms, A. D., and Travis, C. C. (1988). Reference Physiological Parameters In Pharmacokinetic Modeling. US Environmental Protection Agency, Washington, DC. EPA/600/6–88/004.

    Google Scholar 

  • Benedict, F. G. (1938). Vital Energetics: A Study in Comparative Bacal Metabolism. Washington, DC, Carnegie Institute of Washington

    Google Scholar 

  • Boxenbaum, H. (1986). Time concepts in physics, biology, and pharmacokinetics, J. Pharmaceutical Sci. 75 (11): 1053–62.

    Article  CAS  Google Scholar 

  • Boxenbaum, H. (1982). Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics, J. Pharmacokinet. Biopharm. 10: 201–227.

    Google Scholar 

  • Brody, S. (1945). Bioenergetics and Growth: With Special Reference to the Efficiency Complex in Domestic Animals. Reinhold, New York. (reprinted 1964. Darien, CT: Hafner ).

    Google Scholar 

  • Calder, W. A. (1968). Respiration and heart rates of birds at rest. Condor 70: 358–365.

    Article  Google Scholar 

  • Carrell, A. (1931). Physiological time, Science 74: 618–621.

    Article  Google Scholar 

  • Crouch, E., and Wilson R. (1978). Interspecies Comparison of Carcinogenic Potency, Journal of Toxicology and Environmental Health 5: 1095–1118.

    Google Scholar 

  • Crump, K. S. and Guess H. A. (1980). Drinking Water and Cancer: Review of Recent Findings and Assessment of Risks. Science Research Systems Inc., Ruston, Louisiana, CBQ Contract No. EQ10AC018.

    Google Scholar 

  • Dedrick, R. L. (1973). Animal scale-up, J. Pharmacokinetics and Biopharmaceutics 1 (5): 435–461.

    Article  CAS  Google Scholar 

  • Edwards, N. A. (1975). Scaling of renal functions in mammals, Comp. Biochem. Physiol. 52A: 63–66.

    Google Scholar 

  • Federation of American Societies for Experimental Biology (FASEB) (July, 1986 ). Biological Bases for Interspecies Extrapolation of Carcinogenicity Data, (Eds. Thomas Hill, Ralph Wands, and Richard Leukroth, Jr.) Prepared for the FDA by Life Sciences Research Office of the FASEB.

    Google Scholar 

  • Freireich, E. J., Gehan, E. A., Rall, D. P., Schmidt, L. H. and Skipper, H. E. (1966). Quantitative comparison of toxicity of anticancer

    Google Scholar 

  • agents in mouse, rat, hamster, dog, monkey and man, Cancer Chemotherapy Reports 50(4): 219–244.

    Google Scholar 

  • Gerlowski, L. E. and Jain, R. K., (1983). Physiologically based pharmacokinetic modeling: Principles and applications, J. Pharm. Science., 72: 1103–1126.

    Google Scholar 

  • Gunther, B. and Leon de la Barra, B. (1966). On the space-time continuum in biology, Acta Physiol. Latinamerica 16: 221–231.

    Google Scholar 

  • Guyton, A. C. (1947). Measurement of the respiratory volumes of laboratory animals, Amer. J. Physiol. 150: 70–77.

    Google Scholar 

  • Guyton, A. C. (1971). Textbook of Medical Physiology. 4th Edition. Philadelphia, PA, W. B. Saunders Company.

    Google Scholar 

  • Hill, A. V. (1950). The dimensions of animals and their muscular dynamics. Proc. Roy. Inst. G.B., 34: 450–471.

    Google Scholar 

  • Hoel, D. G. (1979). Low-Dose and Species to Species Extrapolation for Chemically Induced Carcinogenesis, in: Banbury Report No. 1: Assesing Chemical Mutagens: The Risks to Humans, ed. V. McElheny. New York: Cold Spring Harbor Laboratory, pp. 135–145.

    Google Scholar 

  • Hogan, M. and Hoel, D. G. (1982). Extrapolation to man, in: Principles of Toxicology, ed. A. W. Hayes, New York, Raven Press.

    Google Scholar 

  • Holt, J. P., Rhode, E. A., and Kines, H. (1968). Ventricular volumes and body weight in mammals, Amer. J. Physiol. 215 (3) pp. 704–715.

    Google Scholar 

  • Huxley, J. S. (1927). On the relation between egg-weight and body-weight in birds, J. Linnean Soc. Zoology 36: 457–466.

    Google Scholar 

  • Jansky, L. (1961). Total cytochrome oxidase activity and its relation to basal and maximal metabolism, Nature 189: 921–922.

    Article  PubMed  CAS  Google Scholar 

  • Jansky, L. (1963). Body organ cytochrome oxidase activity in cold-and-warmacclimated rats, Can. J. Biochem. Physiol., 41: 1847–1854.

    Google Scholar 

  • Kleiber, M. (1932). Body size and metabolism, Hilgardia 6: 315–353.

    CAS  Google Scholar 

  • Kleiber, M. (1961). The Fire of Life. An Introduction to Animal Energetics. New York, Wiley Publications.

    Google Scholar 

  • Kunkel, H. O., Spalding, J. F., de Franciscis, G. and Futrell, M. F. (1956). Cytochrome oxidase activity and body weight in rats and in three species of large animals, Amer. J. Physiol., 186: 203–206.

    Google Scholar 

  • Lindstedt, S. L. and Calder, W. A. (1981). Body size and physiological time, and longevity of homeothermic animals, The Quarterly Review of Biology 56: 1–16.

    Article  Google Scholar 

  • Lindstedt, S. L. (1987) Allometry: Body size constraints in animal design, in: Drinking Water and Health. Pharmacokinetics in Risk Assessment Volume 8. National Academy Press, Washington, DC.

    Google Scholar 

  • Mathieu, O., Krauer, R., Hoppeler, H., Gehr, P., Lindstedt, S. L., Alexander, R., Taylor, C. R., and Weibel, E. R., (1981). Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass, Resp. Physiol., 44: 113–128.

    Google Scholar 

  • McMahon, T. (1973). Size and shape in biology, Science 179: 1201–1204. Midwest Research Institute (MRI) (July 31, 1986 ). Risk Assessment Methodology for Hazardous Waste Management. ( Final Report. )

    Google Scholar 

  • Prepared for the US EPA and Council on Environmental Quality.

    Google Scholar 

  • Mordenti, J. (1986). Man versus beast: pharmacokinetic scaling in mammals, J. Pharmaceutical Science 75 (11): 1028–1040.

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (1987). Drinking Water and Health. Volume 6. National Academy Press, Washington, DC.

    Google Scholar 

  • National Research Council (NRC) (1986). Drinking Water and Health. Pharmacokinetics in Risk Assessment Volume 8. National Academy Press, Washington, DC.

    Google Scholar 

  • Paustenbach, D. J., Andersen, M. E., Clewell, H. J. III, Gargas, M. L., (1988). A physiologically based pharmacokinetic model for inhaled carbon tetrachloride in the rat, Toxicol. Appl. Pharmacol.(In press.)

    Google Scholar 

  • Pinkel, D. (1958). The use of body surface area as a criterion of drug dosage in cancer chemotherapy, Cancer Research 18 (1): 853–856.

    PubMed  CAS  Google Scholar 

  • Prothero 0. (1979). Heart weight as a function of body weight in mammals,Growth 43: 139–150.

    Google Scholar 

  • Ramsey, J. C., and Andersen, M. E. (1984). A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans, Toxicol. Appl. Pharmacol. 73: 159–175.

    Google Scholar 

  • Schmidt-Nielsen K. (1970). Energy metabolism, body size and problems of scaling. Fed. Proc. 29: 1524–1532.

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielson, K. (1984). Scaling: Why is Animal Size So Important? Cambridge: Cambridge University Press.

    Google Scholar 

  • Smith, R. E. (1956). Quantitative relations between liver mitochondria metabolism and total body weight in mammals, Ann. NY Acad. Sci. 62: 403–422.

    Google Scholar 

  • Stahl, W. R. (1965). Organ weights in primate and other mammals, Science 150: 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, W. R. (1967). Scaling of respiratory variables in mammals, J. Appl. Physiology 48: 1052–1059.

    Google Scholar 

  • Travis, C. C. and White, R. K., (1988). Interspecific scaling of toxicity data, Risk Analysis 8: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Travis, C. C., White, R. K., and Ward, R. C. (1988). Interspecies extrapolation of pharmacokinetics, Fundamentals Applied Toxicology (Submitted).

    Google Scholar 

  • Travis, C. C. (1988). Tissue dosimetry in risk assessment, Risk Analysis (Submitted).

    Google Scholar 

  • U. S. Environmental Protection Agency (EPA) (1987). Update of the Health Assessment Document and Addendum for Dichloromethane (Methylene Chloride): Pharmacokinetics, Mechanisms of Action, and Epidemiology. EPA/600/8–87/030A.

    Google Scholar 

  • Ward, R. C., Travis, C. C., Hetrick, D. M., Andersen, M. E., and Gargas, M. L., (1988). Pharmacokinetics of tetrachloroethylene, Toxicol. Appl. Pharmacol. 93: 108–117.

    Google Scholar 

  • White, L., Haines, H. and Adams, T. (1968). Cardiac output related to body weight in small mammals, Comp. Biochem. Physiol. 27: 559–565.

    Google Scholar 

  • Yates, F. E. and Kugler, P. N. (1986). Similarity principles and intrinsic geometrics: contrasting approaches to interspecies scaling, J. Pharmaceutical Sci. 75 (11): 1019–1027.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Travis, C.C. (1989). Interspecies Extrapolation. In: Travis, C.C. (eds) Biologically Based Methods for Cancer Risk Assessment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5625-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5625-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5627-1

  • Online ISBN: 978-1-4684-5625-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics