Skip to main content

Nonlinear Stochastic Theory and Identification of Nonlinearity in Nuclear Reactors

  • Chapter
Noise and Nonlinear Phenomena in Nuclear Systems

Abstract

Presented are a nonlinear stochastic theory and a method for the identification of non-linearity using empirical models in nuclear systems. First I describe a stochastic dynamical power reactor model. Here I proposed are a method (i) of identifying BWR stability with the use of the covariance and the irreversible circulation of fluctuation, and (ii) a method of inferring reactor parameters such as feedback coefficients. Second, the identification theory of 2D random vibration using of a generalized stochastic process and a fluctuation-dissipation theorem is described. Third, the feasibility for the identification of fluid is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.M.R. Williams, “Random Processes in Nuclear Reactors”, Pergamon, Oxford (1974).

    Google Scholar 

  2. J. Thie, “Power Reactor Noise”, American Nuclear Society, La Grange Park (1981).

    Google Scholar 

  3. K. Saito, Ann. Nucl. Energy 1: p31–48 (1974).

    Google Scholar 

  4. K. Saito, Ann. Nucl. Energy 1: 107–128 (1974).

    Google Scholar 

  5. K. Saito, Ann. Nucl. Energy 1: 209–221 (1974).

    Google Scholar 

  6. USSR State Committee on the Utilization of Atomic Energy; The Accident at Chernobyl Nuclear Power Plant and Its Consequences (1986).

    Google Scholar 

  7. H. Mori, T. Morita and K. T. Mashiyama, Progr.Theor.Phys. 63, 1865 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. H. Mori, T. Morita and K. T. Mashiyama, Progr.Theor.Phys. 64: 500 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. H. Haken,“Synergetics”, Springer, Berlin (1977).

    Book  Google Scholar 

  10. VanKampen, Can J. Phys. 39: 551 (1961).

    Article  ADS  MATH  Google Scholar 

  11. R. Kubo, K. Kitahara and K. Matsuo, J. Stat. Phys. 9: 51 (1973).

    Article  ADS  Google Scholar 

  12. T. Taniuch and H. Washimi, Phys. Rev. Lett. 21: 209 (1968).

    Article  ADS  Google Scholar 

  13. K. Saito, “Non-linear Nuclear Stochastic Theory” in: Advances in Nuclear Science and Technology, J. Lewins and M. Becker ed., Plenum Press, New York (1983).

    Google Scholar 

  14. M. Ash, “Nuclear Reactor Kinetics”, 2nd Ed., McGraw-Hill, New York (1979).

    Google Scholar 

  15. e.g., K. Fukunishi, Nucl. Sci. Engng 67: 298 (1978)

    Google Scholar 

  16. Y. Andoh et al., J. Nucl. Sci. Technol. 20: 769 (1983).

    Article  Google Scholar 

  17. D.N. Fry, R.C. Kryter and J.C. Robinson, ORNL-TM-4570 (1974).

    Google Scholar 

  18. T. Fukano and S. Osaka, J. Atomic. Energy Society of Japan 27: 1147 (1985) (in Japanese).

    Article  Google Scholar 

  19. E. Turkan (1984) Summary of SMORN-IV Benchmark Test Problem.

    Google Scholar 

  20. Dentico G., Pacilio V., Paparia B. and Tosi V., Progr. Nucl. Energy 9: 255 (1982).

    Article  Google Scholar 

  21. H. Konno, Ann. Nucl. Energy 13: 185 (1986).

    Article  ADS  Google Scholar 

  22. H. Konno, Progr. Nucl. Energy 21 (1988).

    Google Scholar 

  23. M. Suzuki, Progr. Theor. Phys. 67: 1756 (1982)

    Article  ADS  MATH  Google Scholar 

  24. M. Suzuki, Progr. Theor. Phys. 68: 98 (1982).

    Article  ADS  MATH  Google Scholar 

  25. Y. Okabe, Commn. Math. Phys. 98: 449 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. H. Konno, J. Phys. Soc. Japn. 57: 777 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  27. H. Konno, Progr. Nucl. Energy 15: 209 (1985).

    Article  Google Scholar 

  28. J. M. Leuba et al., Nucl. Sci. Engng. 93: 111 (1986).

    Google Scholar 

  29. J. M. Leuba et al., Nucl. Sci. Engng. 93: 124 (1986).

    Google Scholar 

  30. K. Tomita and H. Tomita, Progr. Theor. Phys. 51: 1731 (1974).

    Article  ADS  Google Scholar 

  31. K. Kishida et al., J. Nucl. Sei. Technol. 13: 161 (1976).

    Article  Google Scholar 

  32. K. Kishida et al., Progr. Nucl. Energy 1: 247 (1977).

    Article  Google Scholar 

  33. K. Hayashi et al., JAERI-M 84–056; 84–137 (1986) and private communications.

    Google Scholar 

  34. B. G. Bergdhal et al., BWR-stablilty Investigation at FORSMAK 1, STUDSVIK/NI-88/12.

    Google Scholar 

  35. R. Oguma et al., Investigation of BWR stability in FORSMAK 2 Based on Multivariable Noise Analysis, STUDSVIK/NI-88/3.

    Google Scholar 

  36. H. Konno, Ann. Nucl. Energy 10: 451 (1983).

    Article  Google Scholar 

  37. H. Konno, Ann. Nucl. Energy 11: 405 (1984).

    Article  Google Scholar 

  38. M. Suzuki, J. Stat. Phys. 49: 977 (1988).

    Article  ADS  Google Scholar 

  39. Karmeshu, Ann. Nucl. Energy 8: 141 (1981).

    Article  Google Scholar 

  40. M.M. R. Williams, Ann. Nucl. Energy 10: 51 (1983).

    Article  Google Scholar 

  41. O. Sako, J. Nucl. Sci. & Technol. 17: 323 (1980).

    Article  Google Scholar 

  42. H. Konno and T. Tanaka (1988) (unpublished).

    Google Scholar 

  43. H. Konno and K. Saito, Ann. Nucl. Energy 11: 1 (1984).

    Article  Google Scholar 

  44. J. A. Thie, Nucl. Technol. 45: 4 (1979).

    Google Scholar 

  45. P. Liewers, W. Schmitt, P. Schumann and F.P. Weiss, Progr. Nucl. Energy 21: (1988).

    Google Scholar 

  46. E. Turkcan, Porgr. Nucl. Energy 9: 437 (1981).

    Article  Google Scholar 

  47. R. Oguma and E. Turkcan, Progr. Nucl. Energy 15: 863 (1985).

    Article  Google Scholar 

  48. U. Frisch and R. Morf, Phys. Rev. A23: 2673 (1981).

    ADS  Google Scholar 

  49. U. Frisch, Physica Scripta T9: 137 (1985).

    Article  ADS  Google Scholar 

  50. H. Mori et al., Physica Scripta T9: 27 (1985).

    Article  ADS  Google Scholar 

  51. H. Konno, H. Soneda, T. Tanaka and K. Hayashi, Ann. Nucl. Energy 18: (1988).

    Google Scholar 

  52. A. Schenzle and H. Brand, Phys. Rev. A20: 1628 (1979).

    ADS  Google Scholar 

  53. R. Kubo, J. Math. Phys. 4: 174 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. L. van Wijngaarden, Ann. Rev. Fluid. Mech. 4: 369 (1972).

    Article  ADS  Google Scholar 

  55. H. Konno, J. Phys. Soc. Japn 57: 1163 (1988).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Konno, H. (1989). Nonlinear Stochastic Theory and Identification of Nonlinearity in Nuclear Reactors. In: Muñoz-Cobo, J.L., Difilippo, F.C. (eds) Noise and Nonlinear Phenomena in Nuclear Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5613-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5613-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5615-8

  • Online ISBN: 978-1-4684-5613-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics