Skip to main content

Effect of Mitochondrial Ca2+ on Hepatic Aspartate Formation and Gluconeogenic Flux

  • Chapter
Book cover Cell Calcium Metabolism

Abstract

According to current evidence, the mechanism of action of many gluconeogenic hormones involves a rise in intracellular free Ca2+ (Charestet al., 1983; Sistareet al., 1985). There is general agreement that hepatic gluconeogenesis is controlled at several sites in the pathway by Ca2+ -and cAMP-mediated phosphorylations of cytosolic enzymes (Hers and Hue, 1983; Pilkiset al., 1986). Nevertheless, there is a perception that other Ca2+ -linked sites of action may be important; in particular, those which involve mitochondrial enzymes (Leverveet al., 1986; McCormack, 1985; Staddon and Hansford, 1987). The purpose of the study was to evaluate the significance of the stimulation by Ca2+ ofα-ketoglutarate dehydrogenase (McCormack, 1985) and pyruvate dehydrogenase (Oviasu and Whitton, 1984) which occurs following exposure of the liver to glucagon or phenylephrine. The dramatic decrease inα-toglutarate caused by these hormones (Siesset al., 1977) is rather convincingly due to the stimulation ofα-ketoglutarate dehydrogenase. Studies from this laboratory (LaNoueet al., 1983; Schoolwerth and LaNoue, 1983) showed thatα-ketoglutarate is a potent and physiologically important inhibitor of glutamate dehydrogenase. Stimulation ofα-ketoglutarate dehydrogenase relieves inhibition of glutamate dehydrogenase byα-ketoglutarate and, thereby, may stimulate gluconeogenesis from amino acids. Glucagon and phenylephrine are also known to stimulate gluconeogenesis from lactate (Hutsonet al., 1976; Kneeret al., 1979), and to stimulate alcohol oxidation (Ochs and Lardy, 1981) and the malate-aspartate cycle (Kneeret al., 1979; Leverveet al., 1986). These processes do not involve glutamate dehydrogenase but rather aspartate aminotransferase and the glutamate aspartate translocase (Rognstad and Katz, 1970; Williamsonet al., 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Charest, R., Blackmore, P. F., Berthon, B., and Exton, J. H., 1983, Changes in free cytosolic Ca2+ in hepatocytes following a-adrenergic stimulation, J. Biol. Chem. 258:8769–8773.

    PubMed  CAS  Google Scholar 

  • Crompton, M., and Goldston, T. P., 1986, The involvement of calcium in the stimulation of respiration in isolated rat hepatocytes by adrenergic agonists and glucagon, FEBS Lett. 204:198–202.

    Article  PubMed  CAS  Google Scholar 

  • Hers, H G., and Hue, L., 1983, Gluconeogenesis and related aspects of glycolysis, Ann. Rev. Biochem. 52:617–653.

    Article  PubMed  CAS  Google Scholar 

  • Hutson, N. J., Brumley, F. T., Assimocopoulos, F. D., Harper, S. C., and Exton, J. H., 1976, Studies on the α-adrenergic activation of hepatic glucose output, J. Biol. Chem. 251:5200–5208.

    PubMed  CAS  Google Scholar 

  • Kneer, N. M., Wagner, M. J., and Lardy, H. A., 1979, Regulation by calcium of hormonal effects on gluconeogenesis, J. Biol. Chem. ,254:12160–12168.

    PubMed  CAS  Google Scholar 

  • Krebs, H. A., Mellanby, J., and Williamson, D. H., 1962, The equilibrium constant of the ß-hydroxy-butyric-dehydrogenase system, Biochem. J. 82:96–98.

    PubMed  CAS  Google Scholar 

  • LaNoue, K. F., and Schoolwerth, A. C., 1979, Metabolite transport in mitochondria, Ann. Rev. Biochem. 48:871–922.

    Article  PubMed  CAS  Google Scholar 

  • LaNoue, K. F., Schoolwerth, A. C., and Pease, A. J., 1983, Ammonia formation in isolated rat liver mitochondria, J. Biol. Chem. 258:1726–1734.

    PubMed  CAS  Google Scholar 

  • LaNoue, K. F., Sterniczuk, A., Strzelecki, T., Hreniuk, S., Scaduto, R., Jr., 1987, The effect of mitochondrial Ca2+ on hepatic aspartate formation and gluconeogenic flux. In: Integration of Mitochondrial Function (J. J. Lemasters, C. R. Hackenbrock, R. G. Thurman, and H. V. Esterhoff, eds.), in press.

    Google Scholar 

  • LaNoue, K. F., Strzelecki, T., and Finch, F., 1984, The effect of glucagon on hepatic respiratory capacity, J. Biol. Chem. 259:4116–4121.

    PubMed  CAS  Google Scholar 

  • Leverve, X. M., Verhoeven, A. J., Groen, A. K., Meijer, A. J., and Tager, J. M., 1986, The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine, Eur. J. Biochem. 155:551–556.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, J. G., 1985, Studies on the activation of rat liver pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase by adrenaline and glucagon, Biochem. J. 231:597–608.

    PubMed  CAS  Google Scholar 

  • Ochs, R. S., and Lardy, H. A., 1981, Catecholamine stimulation of ethanol oxidation by isolated rat hepatocytes, FEBS Lett. 131:119–121.

    Article  PubMed  CAS  Google Scholar 

  • Oviasu, O. A., and Whitton, P. D., 1984, Hormonal control of pyruvate dehydrogenase activity in rat liver. Biochem. J. 224:181–186.

    PubMed  CAS  Google Scholar 

  • Parrilla, R., Jimenez, I., Ayuso-Parrilla, M. S., 1975, Glucagon + insulin control of gluconeogenesis in the perfused isolated rat liver. Effects on cellular metabolite distribution, Eur. J. Biochem. 56: 375–383.

    Article  PubMed  CAS  Google Scholar 

  • Pilkis, S. J., Fox, E., Wolfe, L., Rothbarth, L., Colosia, A., Stewart, H. B., and El-Maghrabi, M. R., 1986, Hormonal modulation of key hepatic regulatory enzymes in the gluconeogenic/glycolytic pathway, Ann. N.Y. Acad. Sci. 478:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Raval, D. N., and Wolfe, R. G., 1962, Malic dehydrogenase. II. Kinetic studies of the reaction mechanism, Biochemistry 1:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Rognstad, R., and Katz, J., 1970, Gluconeogenesis in the kidney cortex, Biochem. J. 116:483–491.

    PubMed  CAS  Google Scholar 

  • Schoolwerth, A. C., and LaNoue, K. F., 1983, Control of ammoniogenesis by α-ketoglutarate in rat kidney mitochondria, Am. J. Physiol. 244:F399–408.

    PubMed  CAS  Google Scholar 

  • Schworer, C. M., El-Maghrabi, M. R., Pilkis, S. J., and Soderling, T. R., 1985, Phosphorylation of L-type pyruvate kinase by a Ca2+ /calmodulin-dependent protein kinase, J. Biol. Chem. 260: 13018–13022.

    PubMed  CAS  Google Scholar 

  • Siess, E. A., Brocks, D. G., Lattke, H. K., and Wieland, O. H., 1977, Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate, Biochem. J. 166: 225–235.

    PubMed  CAS  Google Scholar 

  • Sistare, F. D., Picking, R. A., and Haynes, R. C. Jr., 1985, Sensitivity of the response of cytosolic calcium in Quin-2-loaded rat hepatocytes to glucagon, adenine nucleosides, and adenine nucleotides, J. Biol. Chem. 260:12744–12747.

    PubMed  CAS  Google Scholar 

  • Staddon, J. M., and Hansford, R. G., 1986, 4ß-phorbol 12-myristate 13-acetate attenuates the glucagon-induced increase in cytoplasmic free Ca2+ concentration in isolated rate hepatocytes, Biochem. J. 238:737–743.

    PubMed  CAS  Google Scholar 

  • Staddon, J. M., and Hansford, R. G., 1987, The glucagon-induced activation of pyruvate dehydrogenase in hepatocytes is diminished by 4ß-phorbol 12-myrisate 13-acetate, Biochem. J. 241:729–735.

    PubMed  CAS  Google Scholar 

  • Strzelecki, T., Thomas, J. A., Koch, C. D., and Lanoue, K. F., 1984, The effect of hormones on proton compartmentation in hepatocytes, J. Biol. Chem. 259:4122–4129.

    PubMed  CAS  Google Scholar 

  • Tischler, M. E., Hecht, P., and Williamson, J. R., 1977, Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption, Arch. of Biochem. and Biophys. 181:278–292.

    Article  CAS  Google Scholar 

  • Trinder, P., 1969, Ann. Clin. Biochem. 6:24.

    CAS  Google Scholar 

  • Williamson, J. R., Browning, E. T., Thurman, R. G., and Scholz, R., 1969, Inhibition of glucagon effects in perfused liver by (+) decanoylcarnithine, J. Biol. Chem. 244:5055–5064.

    PubMed  CAS  Google Scholar 

  • Williamson, J. R., and Corkey, B. E., 1969, Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods, Method Enzymol. 13:434–513.

    Article  CAS  Google Scholar 

  • Williamson, J. R., Jakob, A., and Refino, C., 1971, Control of the removal of reducing equivalents from the cytosol in perfused liver, J. Biol. Chem. 246:7632–7641.

    PubMed  CAS  Google Scholar 

  • Zuurendonk, P. F., and Tager, J. M., 1974, Rapid separation of particular components and soluble cytoplasm of isolated rat liver cells, Biochim. et Biophys. Acta 333:393–399.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Sterniczuk, A., Hreniuk, S., Scaduto, R., LaNoue, K.F. (1989). Effect of Mitochondrial Ca2+ on Hepatic Aspartate Formation and Gluconeogenic Flux. In: Fiskum, G. (eds) Cell Calcium Metabolism. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5598-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5598-4_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5600-4

  • Online ISBN: 978-1-4684-5598-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics