Skip to main content

Mechanisms of Intracellular Calcium Movement Activated by Guanine Nucleotides and Inositol-1,4,5-Trisphosphate

  • Chapter
Cell Calcium Metabolism

Abstract

It is now well established that the intracellular second messenger inositol-1,4,5-trisphosphate (IP3) is involved in the release of Ca2+ from a Ca2+ -sequestering organelle, widely considered to be the endoplasmic reticulum (ER) (Berridge and Irvine, 1984; Gill, 1985; Majeruset al., 1986). In a series of recent studies, we observed that a highly sensitive and specific guanine nucleotide regulatory process induces a release of Ca2+ in cells that appears very similar to that mediated by IP3(Gillet al., 1986; Uedaet al., 1986; Chueh and Gill, 1986). Our initial studies were conducted using either permeabilized cells or isolated microsomal membrane vesicles derived from the NIE-115 neuronal cell line; GTP-dependent Ca2+ release was observed to be very similar in the two preparations (Gillet al., 1986; Uedaet al., 1986). Recent studies (Henne and Söling, 1986; Jean and Klee, 1986; Chuehet al., 1987) have extended the number of diverse cell types in which the same GTP-activated Ca2+ release process is observed. In each cell type, submicromolar GTP concentrations rapidly effect a substantial release of Ca2+ sequestered via internal Ca2+ -pumping activity within a nonmitochondrial organelle, believed to be the ER. The Ca2+ -accumulating properties of this intracellular organelle have been described in detail in earlier studies with permeabilized cells (Gill and Chueh, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Burton, P. R., and Laveri, L. A., 1985, The distribution, relationships to other organelles, and calciumsequestering ability of smooth endoplasmic reticulum in frog olfactory axons, J. Neurosci. 5: 3047–3060.

    PubMed  CAS  Google Scholar 

  • Chueh, S. H., and Gill, D. L., 1986, Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms, J. Biol. Chem. 261:13883–13886.

    PubMed  CAS  Google Scholar 

  • Chueh, S. H., Mullaney, J. M., Ghosh, T. K., Zachary, A. L., and Gill, D. L., 1987, GTP and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines, J. Biol. Chem. 262:13857–13864.

    PubMed  CAS  Google Scholar 

  • Dawson, A. P., 1985, GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes, FEBS Lett. 184:147–150.

    Article  Google Scholar 

  • Dawson, A. P., Comerford, J. G., and Fulton, D. V., 1986, The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca2+ efflux from a rat liver microsomal fraction, Biochem. J. 234:311–315.

    PubMed  CAS  Google Scholar 

  • Gill, D. L., 1985, Receptors coupled to calcium mobilization, Adv. Cyclic Nucleotide Protein Phos. Res. 19:195–212.

    Google Scholar 

  • Gill, D. L., and Chueh, S. H., 1985, An intracellular (ATP + Mg2+ )-dependent calcium pump within the N1E-115 neuronal cell line, J. Biol. Chem. 260:9289–9297.

    PubMed  CAS  Google Scholar 

  • Gill, D. L., Chueh, S. H., and Whitlow, C. L., 1984, Functional importance of the synaptic plasma membrane calcium pump and sodium-calcium exchanger, J. Biol. Chem. 259:10807–10813.

    PubMed  CAS  Google Scholar 

  • Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W., 1986, Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism, Nature 320:461–464.

    Article  PubMed  CAS  Google Scholar 

  • Henkart, M. P., Reese, T. S., and Brinley, F. J., 1978, Endoplasmic reticulum sequesters calcium in the squid giant axon, Science 202:1300–1303.

    Article  PubMed  CAS  Google Scholar 

  • Henne, V., and Soling, H-D., 1986, Guanosine 5′-triphosphate releases calcium from rat liver and guinea pig parotid gland endoplasmic reticulum independently of inositol 1,4,5-trisphosphate, FEBS Lett. 202:267–273.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S. W., Isac, T., Boni, L. T., and Sen, A., 1985, Action of polyethylene glycol on the fusion of human erythrocyte membranes, J. Membrane Biol. 84:137–146.

    Article  CAS  Google Scholar 

  • Irvine, R. F., and Moor, R. M., 1986, Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240:917–920.

    PubMed  CAS  Google Scholar 

  • Jean, B., & Klee, C. B., 1986, Calcium modulation of inositol 1,4,5-trisphosphate-induced calcium release from neuroblastoma X glioma hybrid (NG108–15) microsomes, J. Biol. Chem. 261: 16414–16420.

    PubMed  CAS  Google Scholar 

  • Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H., Bansal, V. S., and Wilson, D. B., 1986, The metabolism of phosphoinositide-derived messenger molecules, Science 234:1519–1526.

    Article  PubMed  CAS  Google Scholar 

  • Martonosi, A. N., 1982, Transport of calcium by sarcoplasmic reticulum, in: Calcium in Cell Function, Vol. 3 (W. Y. Cheung, ed.), Academic Press, New York, pp. 37–102.

    Google Scholar 

  • McGraw, C. F., Somlyo, A. V., and Blaustein, M. P., 1980, Localization of calcium in presynaptic nerve terminals. J. Cell Biol. 85:228–241.

    Article  PubMed  CAS  Google Scholar 

  • Muallem, S., Schoeffield, M., Pandol, S., and Sachs, G., 1985, Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum, Proc. Natl. Acad. Sci. USA 82:4433–4437.

    Article  PubMed  CAS  Google Scholar 

  • Mullaney, J. M., Chueh, S. H., Ghosh, T. K., and Gill, D. L., 1987, Intracellular calcium uptake activated by GTP: Evidence for a possible guanine nucleotide-induced transmembrane conveyance of intracellular calcium, J. Biol. Chem. 262:13865–13872.

    PubMed  CAS  Google Scholar 

  • Norris, J. S., Gorski, J., and Kohler, P. O., 1974, Androgen receptors in a Syrian hamster ductus deferens tumour cell line, Nature 248:422–424.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J. W., 1986, A model for receptor-regulated calcium entry, Cell Calcium 7:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. B., Smith, L., and Higgins, B. L., 1985, Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells, J. Biol. Chem. 260:14413–14416.

    PubMed  CAS  Google Scholar 

  • Ueda, T., Chueh, S. H., Noel, M. W., and Gill, D. L., 1986, Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line, J. Biol. Chem. 261:3184–3192.

    PubMed  CAS  Google Scholar 

  • Wakasugi, H., Kimura, T., Haase, W., Kribben, A., Kaufmann, R., and Schulz, I., 1982, Calcium uptake into acini from rat pancreas: evidence for intracellular ATP-dependent calcium sequestration, J. Membrane Biol. 65:205–220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Gill, D.L., Mullaney, J.M., Ghosh, T.K., Chueh, SH. (1989). Mechanisms of Intracellular Calcium Movement Activated by Guanine Nucleotides and Inositol-1,4,5-Trisphosphate. In: Fiskum, G. (eds) Cell Calcium Metabolism. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5598-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5598-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5600-4

  • Online ISBN: 978-1-4684-5598-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics