Skip to main content

Applications of CPBS to Cancer Hazard Identification

  • Chapter
  • 52 Accesses

Abstract

The field of genetic toxicology finds itself at a crossroads. On the one hand, the premise of the somatic mutation theory of cancer, which provides a scientific basis for the development of short-term tests for predicting cancers, has been amply vindicated by the discovery of oncogene activation. On the other hand, however, recent NTP-sponsored studies have cast doubt upon the performance of short-term tests as predictors of carcinogenicity (Tennant et al., 1987). Analysis of the NTP results by the CPBS shows that this is an incorrect conclusion resulting from an oversimplification (Rosenkranz and Ennever, 1988a). Also, it appears that we have no choice but to continue using short-term tests since the other alternatives are (a) not to test but to wait for untoward effects in our exposed human population and (b) to continue relying solely on animal bioassays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby, J., 1986, “The prospects for a simplified and internationally harmonized approach to the detection of possible human carcinogens and mutagens,” Mutagenesis, 1:3–16.

    Article  CAS  Google Scholar 

  • Chankong, V., Haimes, Y. Y., Rosenkranz, H. S., and Pet-Edwards, J., 1985, “The Carcinogenicity Prediction and Battery Selection (CPBS) method: A Bayesian approach,” Mutation Res. 153:135–166.

    CAS  Google Scholar 

  • Dearfield, K. L., Abnerathy, C. O., Ottley, M. S., Brantner, J. H., and Hayes, P. F., 1988, “Acrylamide: Its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity,” Mutation Res., 195:45–47.

    CAS  Google Scholar 

  • Ennever, F. K., and Rosenkranz, H. S., 1986a, “Predicting the carcinogenicity of the aromatic amine derivatives tested in the second UKEMS Collaborative Study,” Mutagenesis, 1:119–123.

    Article  CAS  Google Scholar 

  • Ennever, F. K., and Rosenkranz, H. S., 1986b, “Short-term test results for NTP noncarcinogenesis: An alternate, more predictive battery,” Environ. Mutagenesis, 8:849–865.

    Article  CAS  Google Scholar 

  • Ennever, F. K., and Rosenkranz, H. S., 1986c, “Evaluating batteries of short-term genotoxicity tests,” Mutagenesis, 1:293–298.

    Article  CAS  Google Scholar 

  • Ennever, F. K., and Rosenkranz, H. S., 1987a, “Evaluating the potential genotoxic carcinogenicity of methyl isocyanate,” Toxical. Appl. Pharmacol., 91:502–505.

    Article  CAS  Google Scholar 

  • Ennever, F. K., and Rosenkranz, H. S., 1987b, “Selection of batteries in an industrial setting,” Environ. Mutagenesis, 9:359–361.

    Google Scholar 

  • Ennever, F. K., and Rosenkranz, H. S., 1988a, “The influence of the proportions of carcinogens on the cost-effectiveness of short-term tests,” Mutation Res., 197:1–13.

    Article  CAS  Google Scholar 

  • Ennever, F. K., and Rosenkranz, H. S., 1988b, “Methodologies for interpretations of short-term test results which may allow reduction in the use of animals in carcinogenicity testing,” Toxicol. Ind. Health, 4:137–149.

    CAS  Google Scholar 

  • Ennever, F. K., Noonan, T. J., and Rosenkranz, H. S., 1987, “The predictivity of animal bioassays and short-term genotoxicity test for carcinogenicity and noncarcinogenicity to humans,” Mutagenesis, 2:73–78.

    Article  CAS  Google Scholar 

  • Gold, L. S., de Veciana, M., Backman, G. M., Magaw, R., Lopipero, Pl., Smith, M., Hooper, N. K., Havender, W. R., Bernstein, L., Peto, R., Pike, M. C., and Ames, B. N., 1984, “A carcinogenic potency database of the standardized results of animal bioassays,” Environ. Health Perspect., 58:9–319.

    Article  CAS  Google Scholar 

  • Griesemer, R. A., Harper, C., Calabrese, E., Michalopoulos, G., Rosenkranz, H. S., Schneider-man, M., and Sipes, I. G., 1985, “Report to the U.S. Consumer Product Safety Commission by the Chronic Hazard Advisory Panel on Di-(2-Ethylhexyl)phthalate.

    Google Scholar 

  • Haimes, Y. Y., Chankong, V., Pet-Edwards, J., and Rosenkranz, H. S., 1987, “Carcinogenicity prediction and battery selection procedure: An in depth analysis of cyclamate and its major metabolite cyclohexylamine,” Molec. Toxicol., 1:49–60.

    CAS  Google Scholar 

  • Havel, R. J., Griesemer, R. A., Lagakos, S. W., Munro, I. C., Pitot, H. C., Rosenkranz, H. S., Stellman, S., Tardiff, R. G., Thomas, D. W., Ward, J. N., Weinhouse, S., and Williams G. M., 1985, Evaluation of Cyclamates for Carcinogenicity, National Academy of Sciences Press, Washington D.C.

    Google Scholar 

  • Hu, S., 1985, “A multiobjective risk methodology for the optimal selection of a battery of tests,” M.S. thesis, Case Western Reserve, University.

    Google Scholar 

  • IARC, 1986, “IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humains, Some Chemicals Used in Plastics and Elastomers,” Vol. 39, pp. 41–66, International Agency for Research on Cancer, Lyon, France.

    Google Scholar 

  • IARC, 1988, “IARC Monograph Supplement 7,” International Agency for Research on Cancer, Lyon, France.

    Google Scholar 

  • Jerina, D. M., Lehr, R. E., Yagi, H., Hernandez, O., Dansette, P. M., Wislocki, P. G., Wood, A. W., Chang, R. L., Levin, W., and Conney, A. H., 1976, “Mutagenicity of benzo(a)pyrene derivatives and the description of a quantum mechanical model which predicts the ease of carbonium ion formation from diol epoxides,” in F. J. de Serres, J. R. Fouts, J. R. Bend, and R. M. Philpot (eds.): In Vitro Metabolic Activation in Mutagenesis Testing, Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 159–178.

    Google Scholar 

  • Lave, L. B., Ennever, F. K., Rosenkranz, H. S., and Omenn, G. S., 1988, “Information value of the rodent bioassay,” Nature, 336:631–633.

    Article  CAS  Google Scholar 

  • Matsushima, T., 1987, Chemical Safety Evaluation in Japan, 175.

    Google Scholar 

  • Miller, J. A., 1970, “Carcinogenesis by chemicals: An overview,” Cancer Res., 30:559–576.

    CAS  Google Scholar 

  • Miller, J. A., and Miller, E. C., 1977, “Ultimate chemical carcinogens as reactive mutagenic electrophiles,” in Origins of Human Cancer, H. H. Hiatt, J. D. Watson, and J. A. Winsten (eds.), Cold Spring Harbor Laboratory: Cold Spring Harbor, pp. 605–627.

    Google Scholar 

  • Nesnow, S., Argus, M., Bergman, H., Chu, K., Frith, C., Helmes, T., McGaughey, R., Ray, V., Slaga, T. J., Tennant, R., and Weisburger, E., 1987, “Chemical carcinogens: A review and analysis of the literature of selected chemicals and the establishment of the Gene-Tox Carcinogen Data Base,” Mutation Res., 185:1–195.

    CAS  Google Scholar 

  • Paladja, M., and Rosenkranz, H. S., 1985, “Assembly and preliminary analysis of a genotoxicity data base for predicting carcinogens,” Mutation Res., 153:79–134.

    Google Scholar 

  • Pet-Edwards, J., 1986, “Selection and interpretation of conditionally independent tests for binary predictions: A Bayesian approach,” Ph.D. dissertation, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  • Pet-Edwards, J., Chankong, V., Rosenkranz, H. S., and Haimes, Y. Y., 1985a, “Application of the carcinogenicity prediction and battery selection (CPBS) methodology to the Gene-Tox data base,” Mutation Res., 153:187–200.

    CAS  Google Scholar 

  • Pet-Edwards, J., Rosenkranz, H. S., Chankong, V., and Haimes, Y. Y., 1985b, “Cluster analysis in predicting the carcinogenicity of chemicals using short-term assays,” Mutation Res., 153:167–185.

    CAS  Google Scholar 

  • Rosenkranz, H. S., and Ennever, F. K., 1987, “Evaluation of the genotoxicity of theobromine and caffeine,” Food Chem. Toxicol., 25:247–251.

    Article  CAS  Google Scholar 

  • Rosenkranz, H. S., and Ennever, F. K., 1988a, “New approaches to battery selection and interpretation,” in: New Trends in Genetic Toxicology, G. Jolies and A. Cordier (eds.), Academic Press, New York, in press.

    Google Scholar 

  • Rosenkranz, H. S., and Ennever, F. K., 1988b, “Quantifying genotoxicity and nongenotoxicity,” Mutation Res., 205:59–67.

    Article  CAS  Google Scholar 

  • Rosenkranz, H. S., and Klopman, G., 1987, “Computer automated structure evaluation of the carcinogenicity of N-nitrosothiazolidine 4-carboxylic acid,” Chem. Toxicol., 25:253–256.

    Article  CAS  Google Scholar 

  • Rosenkranz, H. S., Ennever, F. K., Chankong, V., Pet-Edwards, J., and Haimes, Y. Y., 1986a, “An objective approach to the deployment of short-term tests predictive of carcinogenicity,” Cell Biol. Toxicol., 2:425–440.

    Article  CAS  Google Scholar 

  • Rosenkranz, H. S., Frierson, M. R., and Klopman, G., 1986b, “Computer-automated prediction of the mutagenicity of benzidine, 4,4″-diaminoterphenyl, 4-dimethylaminoazobenzene and 4-cyanodimethylaniline: Comparison with the results of the Second UKEMS Collaborative Study,” Mutagenesis, 1:275–282.

    Article  CAS  Google Scholar 

  • Rosenkranz, H. S., Frierson, M. R., and Klopman, G., 1988, “Predicting the carcinogenicity of pyrene, benzo(a)pyrene, 2-acetylaminofluorene and 4-acetylaminofluorene using newly developed computer based methods,” in: Evaluation of Short-Term Tests for Carcinogens, Report of the International Programme on Chemical Safety’s Collaborative Study on in vivo Assays, J. Ashby, et al. (eds.), Cambridge University Press, in press.

    Google Scholar 

  • Tennant, R. W., Margolin, B. H., Shelby, M. D., Zeiger, E., Haseman, J. K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R., 1987, “Prediction of chemical carcinogenicity in rodents from in vitro genotoxicity assays,” Science, 236:933–941.

    Article  CAS  Google Scholar 

  • Weisburger, J. H., and Williams, G. M., 1981, “Carcinogen testing: Current problems and new approaches,” Science, 214:401–407.

    Article  CAS  Google Scholar 

  • Yander, G., Lin, G. H. Y., and Mermelstein, R., 1987, “Selection of batteries in an industrial setting (Letter to the Editor),” Environ. Mutagenesis, 9:357–358.

    Article  CAS  Google Scholar 

  • Zeiger, E., 1987, “Carcinogenicity of mutagens: Predictive capability of the Salmonella mutagenesis assay for rodent carcinogenicity,” Cancer Res., 47:1287–1296.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Pet-Edwards, J., Haimes, Y.Y., Chankong, V., Rosenkranz, H.S., Ennever, F.K. (1989). Applications of CPBS to Cancer Hazard Identification. In: Risk Assessment and Decision Making Using Test Results. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5595-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5595-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5597-7

  • Online ISBN: 978-1-4684-5595-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics