Skip to main content

Extrinsic Determinants of Retinal Ganglion Cell Development in Cats and Monkeys

  • Chapter

Part of the book series: Perspectives in Vision Research ((PIVR))

Abstract

Vision in vertebrates is subserved by a number of specialized channels that function in parallel in order to extract simultaneously a variety of features of the environment (reviewed by Stone et al, 1979). As with all things visual, these parallel pathways begin in the retina. The mammalian retina contains a variety of ganglion cell types which have different forms, functional properties, and central projections (Enroth-Cugell and Robson, 1966; Boycott and Wässle, 1974; Cleland and Levick, 1974a,b; Stone and Fukuda, 1974). The developmental processes through which neurons in general and ganglion cells in particular differentiate into distinct types have recently begun to be explored (Eysel et al, 1985; Kirby and Chalupa, 1986; Maslim et al, 1986; Ramoa et al, 1987; Leventhalet al, 1988a,b). Both intrinsic (genetic) factors and extrinsic influences of the cell’s environment appear to mediate the determination of adult cell type.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov, I., Gordon, J., Hendrickson, A., Mainline, L., Dobson, V., and Labossiere, E., 1982, The retina of the newborn human infant. Science 217:265–267.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., 1976, Experimental reorganization of the cerebellar cortex VII. Effects of late X- irradiation schedules that interfere with cell acquisition after stellate cells are formed, J. Comp. Neurol 165:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., and Anderson, W. J., 1972, Experimental reorganization of the cerebellar cortex. I. Morphological effects of ehmination of all microneurons with prolonged X-irradiation started at birth, J. Comp. Neurol. 146:355–406.

    Article  PubMed  CAS  Google Scholar 

  • Ault, S. J., Schall, J. D., and Leventhal, A. G., 1985, Experimental alterations of cat retinal ganglion cell dendritic field structure, Soc. Neurosci. Abstr. 11:15.

    Google Scholar 

  • Bowling, D. B., and Michael, C. R., 1984, Terminal patterns of single, physiologically characterized optic tract fibers in the cat’s lateral geniculate nucleus, J. Neurosci. 4:198–216.

    PubMed  CAS  Google Scholar 

  • Boycott, B. B., and Wässle, H., 1974, The morphological types of ganglion cells of the domestic cat’s retina, J. Physiol. (London) 240:397–419.

    CAS  Google Scholar 

  • Bradley, P., and Berry, M., 1976, The effects of reduced climbing and parallel fibre input on Purkinje cell dendritic growth. Brain Res. 109:133–151.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, P., Sefton, A. J., Dreher, B., and Lim, W., 1986, Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: Effects of kainate lesions of the superior colliculus, J. Comp. Neurol. 251:240–259.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, B. G., and Levick, W. R., 1974a, Brisk and sluggish concentrically organized ganglion cells in the cat’s retina, J. Physiol. (London) 240:421–456.

    CAS  Google Scholar 

  • Cleland, B. G., and Levick, W. R., 1974b, Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification, J. Physiol. (London) 240:457–492.

    CAS  Google Scholar 

  • Deitch, J. S., and Rubel, E. W., 1984, Afferent influences on brainstem auditory nuclei of the chicken: Time course and specificity of dendritic atrophy following deafferentation, J. Comp. Neurol. 229:66–79.

    Article  PubMed  CAS  Google Scholar 

  • Enroth-Cugell, C., and Robson, J. G., 1966, The contrast sensitivity of retinal ganglion cell of the cat, J. Physiol. (London) 187:517–552.

    CAS  Google Scholar 

  • Eysel, U. T., Peichl, L., and Wässle, H., 1985, Dendritic plasticity in the early postnatal feline retina: Quantitative characteristics and sensitive period, J. Comp. Neurol. 242:134–145.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander, M. J., Lin, C.-S., Stanford, L. R., and Sherman, S. M., 1979, Structure of physiologically identified X and Y cells in the cat’s lateral geniculate nucleus. Science 204:1114–1117.

    Article  PubMed  CAS  Google Scholar 

  • Harris, R. M., and Woolsey, T. A., 1981, Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage, J. Comp. Neurol 196:357–376.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, A., and Kupfer, C., 1976, The histogenesis of the fovea in the macaque monkey, Invest. Ophthalmol 15:746–756.

    CAS  Google Scholar 

  • Hendrickson, A., and Yuodelis, C., 1984, The morphological development of the human fovea, Ophthalmology 91:603–612.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Hockfield, S., Jones, E. G., and McKay, R., 1984, Monoclonal antibody that identifies subsets of neurons in the central visual system of monkey and cat. Nature (London) 307:267–269.

    Article  CAS  Google Scholar 

  • Illing, R. B., and Wässle, H., 1981, The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway, J. Comp. Neurol 202:265–285.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, D. S., Perry, V. H., and Hawken, M. J., 1984, The postnatal reduction of the uncrossed projection from the nasal retina in the cat, J. Neurosci. 4:2425–2433.

    PubMed  CAS  Google Scholar 

  • Kelly, J. P., and Gilbert, C. D., 1975, The projections of different morphological types of ganglion cells in the cat retina, J. Comp. Neurol 163:65–80.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, M. A., and Chalupa, L., 1986, Retinal crowding alters the morphology of alpha ganglion cells, J. Comp. Neurol. 251:532–541.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., 1979, The inner plexiform layer in the retina of the cat: Electron microscopic observations, J. Neurocytol. 8:295–329.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Nelson, R., and Mariani, A., 1981, Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Res. 221:1081–1114.

    Article  Google Scholar 

  • Leventhal, A. G., 1982, Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and Siamese cats, J. Neurosci. 2:1024–1042.

    PubMed  CAS  Google Scholar 

  • Leventhal, A. G., and Creel, D. J., 1985, Retinal projection and functional architecture of cortical areas 17 and 18 in the Tyrosinase-negative albino cat, J. Neurosci. 5:795–807.

    PubMed  CAS  Google Scholar 

  • Leventhal, A. G., and Schall, J. D., 1983, Structural basis of orientation sensitivity of cat retinal ganglion cells, J. Comp. Neurol. 220:465–475.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A. G., Keens, J., and Törk, L, 1980, The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat’s “pulvinar complex,” J. Comp. Neurol. 194:535–554.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A. G., Rodieck, R. W., and Dreher, B., 1981, Retinal ganglion cell classes in old-world monkey: Morphology and central projections. Science 213:1139–1142.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A. G., Rodieck, R. W., and Dreher, B., 1985, Central projections of cat retinal ganglion cells, J. Comp. Neurol. 237:216–226.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A. G., Schall, J. D., and Ault, S. J., 1988a, Extrinsic determinants of retinal ganglion cell structure in the cat, J. Neurosci., 8:2028–2038.

    PubMed  CAS  Google Scholar 

  • Leventhal, A. G., Schall, J. D., Ault, S. J., Provis, J. M., and Vitek, D. J., 1988b, Class specific cell death during development shapes the distribution and pattern of central projection of cat retina ganglion cells, J. Neurosci., 8:2011–2027.

    PubMed  CAS  Google Scholar 

  • Linden, R., and Perry, V. H., 1982, Ganglion cell death within the developing retina: A regulatory role for retina dendrites? Neuroscience 7:2813–2837.

    Article  PubMed  CAS  Google Scholar 

  • Mann, L, 1964, The Development of the Human Eye, British Medical Association, London.

    Google Scholar 

  • Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P., and Sotelo, C., 1977, Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse, Philos. Trans. R. Soc. London 281:1–28.

    Article  CAS  Google Scholar 

  • Maslim, J., Webster, J., and Stone, J., 1986, Stages in the structural differentiation of retinal ganglion cells, J. Comp. Neurol. 254:382–402.

    Article  PubMed  CAS  Google Scholar 

  • Michael, C. R., 1983, Functional classes of neurons in monkey’s lateral geniculate nucleus have distinctive morphology, Soc. Neurosci. Abstr. 9:1047.

    Google Scholar 

  • Parks, T. N., 1981, Changes in the length and organization of nucleus laminaris dendrites after unilateral otocyst ablation in chick embryos, J. Comp. Neurol. 202:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V. H., and Cowey, A., 1984, Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey, Neuroscience 12:1125–1137.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V. H., and Linden, R., 1982, Evidence for dendritic competition in the developing retina. Nature (London) 297:683–685.

    Article  CAS  Google Scholar 

  • Perry, V. H., Oehler, R., and Cowey, A., 1984, Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey, Neuroscience 12:1101–1123.

    Article  PubMed  CAS  Google Scholar 

  • Polyak, S., 1941, The Retina, University of Chicago Press, Chicago.

    Google Scholar 

  • Rakic, P., and Sidman, R. L., 1973a, Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice, J. Comp. Neurol. 152:103–132.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., and Sidman, R. L., 1973b, Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice, J. Comp. Neurol. 152:133–162.

    Article  PubMed  CAS  Google Scholar 

  • Ramoa, A. S., Campbell, G., and Shatz, C. J., 1987, Transient morphological features of identified ganglion cells in living fetal and neonatal retina, Science 237:522–525.

    Article  PubMed  CAS  Google Scholar 

  • Rapaport, D. H., and Stone, J., 1983, Time course of morphological differentiation of cat retinal ganglion cells: Influences on soma size, J. Comp. Neurol. 221:42–52.

    Article  PubMed  CAS  Google Scholar 

  • Rodieck, R. W., Binmoeller, K. F., and Dineen, J., 1985, Parasol and midget ganglion cells of the human retina, J. Comp. Neurol. 233:115–132.

    Article  PubMed  CAS  Google Scholar 

  • Rolls, E. T., and Cowey, A., 1970, Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys, Exp. Brain Res. 10:298–310.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, M. H., and Stone, J., 1980, The interpretation of variation in the classification of nerve cells. Brain Behav. Evol. 17:1233–1251.

    Google Scholar 

  • Schall, J. D., and Leventhal, A. G., 1987, Relationships between ganglion cell dendritic structure and retinal topography in the cat. J. Comp. Neurol. 257:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Schall, J. D., Perry, V. H., and Leventhal, A. G., 1987, Ganglion cell dendritic structure and retinal topography in the rat, J. Comp. Neurol. 257:160–165.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo, C., 1975, Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse, Brain Res. 94:19–44.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo, C., and Arsenio-Nunes, M. L., 1976, Development of Purkinje cells in absence of climbing ühers. Brain Res. 111:389–395.

    Article  Google Scholar 

  • Sotelo, C., and Changeux, J. P., 1974, Transsynaptic degeneration in cascade in cerebellar cortex of staggerer mutant mice. Brain Res. 67:519–526.

    Article  PubMed  CAS  Google Scholar 

  • Steffan, H., and Van der Loos, H., 1980, Early lesions of mouse vibrissal follicles: Their influence on dendritic orientation in the cortical barrelfield, Exp. Brain Res. 40:419–431.

    Google Scholar 

  • Stevens, J. K., McGuire, B. A., and Sterhng, P., 1980, Toward a functional architecture of the retina: Serial reconstruction of adjacent ganglion cells. Science 207:317–319.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., 1965, A quantitative analysis of the distribution of ganglion cells in the cat’s retina, J. Comp. Neurol. 124:337–352.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., 1966, The nasotemporal division of the cat’s retina, J. Comp. Neurol. 126:585–600.

    PubMed  CAS  Google Scholar 

  • Stone, J., and Fukuda, Y., 1974, Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells, J. Neurophysiol. 37:722–748.

    PubMed  CAS  Google Scholar 

  • Stone, J., and Johnston, E., 1981, The topography of primate retina: A study of the human, bushbaby, and new- and old-world monkeys, J. Comp. Neurol. 196:205–223.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., Campion, J. E., and Leicester, J., 1978, The nasotemporal division of the retina in the Siamese cat, J. Comp. Neurol. 180:783–798.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., Dreher, B., and Leventhal, A. G., 1979, Hierarchical and parallel mechanisms in the organization of the visual cortex. Brain Res. Rev. 1:345–394.

    Article  Google Scholar 

  • Vitek, D. J., Schall, J. D., and Leventhal, A. G., 1985, Morphology, central projections and dendritic field orientation of retinal ganglion cells in the ferret, J. Comp. Neurol. 241:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C., and Polley, E. H., 1985, The topography of ganglion cell production in the cat’s retina, J. Neurosci. 5:741–750.

    PubMed  CAS  Google Scholar 

  • Wässle, H., and Illing, R. B., 1980, The retinal projection to the superior colliculus in the cat: A quantitative study with HRP, J. Comp. Neurol. 190:333–356.

    Article  PubMed  Google Scholar 

  • Wässle, H., Peichl, L., and Boycott, B. B., 1981a, Dendritic territories of cat retinal ganglion cells, Nature (London) 292:344–345.

    Article  Google Scholar 

  • Wässle, H., Peichl, L., and Boycott, B. B., 1981b, Morphology and topography of on- and off- alpha cells in the cat retina, Proc. R. Soc. London Ser. B 212:157–175.

    Article  Google Scholar 

  • Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17:205–242.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey, T. A., Dierker, M. L., and Wann, D. F., 1975, Mouse Smi cortex: Qualitative and quantitative classification of Goldi-impregnated barrel neurons, Proc. Natl. Acad. Sci. U.S.A. 72:2165–2169

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Leventhal, A.G., Schall, J.D. (1989). Extrinsic Determinants of Retinal Ganglion Cell Development in Cats and Monkeys. In: Finlay, B.L., Sengelaub, D.R. (eds) Development of the Vertebrate Retina. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5592-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5592-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5594-6

  • Online ISBN: 978-1-4684-5592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics