Skip to main content

Dendritic Interactions between Cell Populations in the Developing Retina

  • Chapter

Part of the book series: Perspectives in Vision Research ((PIVR))

Abstract

It has been known for some time that the cones of different types in the retinas of fish and birds are distributed in a very precise fashion, forming an almost crystal-like pattern. The first to draw attention to the regular distribution of cells in the inner layers of the mammalian retina was Wässle and Reimann (1978). They showed from an analysis of the distribution of the nearest-neighboring cells that the cell bodies of cat alpha ganglion cells and A- type horizontal cells were each arranged in nonrandom patterns. Subsequently, there have been a number of studies demonstrating that other cell types are arranged in nonrandom distributions (e.g., Wässle et al., 1981c; Tauchi and Masland, 1984; Vaney, 1986). The regular distribution of the cell bodies appears to go hand in hand with the relatively uniform coverage of the retina by the dendritic territories of a particular cell type (Wässle et al, 1981a,b; Tauchi and Masland, 1984). The term coverage, the number of cells overlapping any given point on the retina, is readily computed as the product of the dendritic area and local density of a given cell type (Cleland et al, 1975). The functional significance of the regular spacing of the cell bodies and the uniform coverage of the retina is clear. If the retina is to sample the visual world faithfully and convey the information to the brain, cells dealing with different aspects of the visual scene should be distributed so as to leave no holes in our perceptual world. The regular spacing of the cell bodies and relatively uniform coverage ensure this in a most economic fashion

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armson, P. F., Bennett, M. R., and Raju, T. R., 1987, Retinal ganglion cell survival and neurite regeneration requirements: The change from Müller cell dependence to superior colliculi dependence during development. Dev. Brain Res. 32:207–216.

    Article  Google Scholar 

  • Beazley, L. D., Perry, V. H., Baker, B., and Darby, J. E., 1987, An investigation into the role of ganglion cells in the regulation of division and death of other retinal cells. Dev. Brain Res. 33:179–184.

    Article  Google Scholar 

  • Blanks, J. C., and Bok, D., 1977, An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina, J. Comp. Neurol. 174:317–328.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, P., Sefton, A. J., Dreher, B., and Lim, W.-L., 1986, The role of the target tissue in regulating the development of retinal ganglion cells in the albino rat: Effects of kianate lesions in the superior colliculus, J. Comp. Neurol 251:240–259.

    Article  PubMed  CAS  Google Scholar 

  • Chalupa, L. M., Williams, R. W., and Hendrickson, Z., 1984, Binocular interactions in the fetal cat regulate the size of the ganglion cell population, Neuroscience 12:1139–1146.

    Article  Google Scholar 

  • Clarke, P. G. H., 1985, Neuronal death during development in the isthmo-optic nucleus of the chick: Sustaining role of afferents from the tectum, J. Comp. Neurol. 234:365–379.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, B. G., Levick, W. R., and Wassle, H., 1975, Physiological identification of a morphological class of cat retinal ganglion cells, J.Physiol. (London) 248:151–171.

    CAS  Google Scholar 

  • Cowey, A., 1974, Atrophy of retinal ganglion cells after removal of striate cortex in a rhesus monkey, Perception 3:257–260.

    Article  PubMed  CAS  Google Scholar 

  • Cowey, A., and Perry, V. H., 1979, The projection of the temporal retina in rats, studied by the retrograde transport of horseradish peroxidase, Exp. Brain Res. 35:457–464.

    PubMed  CAS  Google Scholar 

  • Cunningham, T. J., 1982, Naturally occurring cell death and its regulation by developing neural pathways. Int. Rev. Cytol. 74:163–186.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, T. J., Huddleston, C., and Murray, M., 1979, Modification of neuron numbers in the visual system of the rat, J. Comp. Neurol. 184:423–434.

    Article  PubMed  CAS  Google Scholar 

  • Davies, A. M., Thoenen, H., and Barde, Y.-A., 1986, Different factors from the central nervous system and the periphery regulate the survival of sensory neurons. Nature (London) 319:497–499.

    Article  CAS  Google Scholar 

  • De Meyts, P., 1976, Cooperative properties of hormone receptors in cell membranes, J. Swpramos. Struct. 4:241–258.

    Article  Google Scholar 

  • Dineen, J., and Hendrickson, A. E., 1981, Age-correlated differences in the amount of retinal degeneration after striate cortex lesions in monkeys. Invest. Ophthal. Vis. Sci. 21:749–752.

    PubMed  CAS  Google Scholar 

  • Dräger, U. C., 1985, Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse, Proc. R. Soc. London Ser. B 224:57–77.

    Article  Google Scholar 

  • Dunn, G. A., 1971, Mutual contact inhibition of extension of chick sensory fibres in vitro, J. Comp. Neurol. 143:491–508.

    Article  PubMed  CAS  Google Scholar 

  • Eayrs, J. T., 1952, Relationship between the ganglion cell layer of the retina and the optic nerve in the rat, Br. J. Ophthalmol. 36:453–459.

    Article  PubMed  CAS  Google Scholar 

  • Eysel, U., Peichl, L., and Wassle, H., 1985, Dendritic plasticity in the early postnatal feline retina: Quantitative characteristics and sensitive period, J. Comp. Neurol. 242:134–145.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. L., Sengelaub, D. R., and Berian, C. A., 1986, Control of cell number in the developing visual system. L Effects of monocular enucleation. Dev. Brain Res. 28:1–10.

    Article  Google Scholar 

  • Fisher, L. J., 1979, Development of synaptic arrays in the inner plexiform layer of the neonatal mouse retina, J. Comp. Neurol. 147:359–372.

    Article  Google Scholar 

  • Furber, S., Oppenheim, R. W., and Prevette, D., 1987, Naturally occurring neuron death in the ciliary ganglion of the chick embryo following removal of preganglionic input: Evidence for the role of afferents in ganglion cell survival, J. Neurosci. 7:1816–1832.

    PubMed  CAS  Google Scholar 

  • Horvitz, H. R., Ellis, H. M., and Sternberg, P. W., 1982, Programmed cell death in nematode development, Neurosci. Comment 1:56–65.

    Google Scholar 

  • Jacobs, D. S., Perry, V. H., and Hawken, M. J., 1984, The postnatal reduction of the uncrossed projection from the nasal retina in the cat, J. Neurosci. 4:2425–2433.

    PubMed  CAS  Google Scholar 

  • Jeffery, G., 1984, Retinal ganglion cell death and terminal field retraction in the developing rodent visual system, Dev. Brain Res. 13:81–96.

    Article  Google Scholar 

  • Jeffery, G., and Perry, V. H., 1982, Evidence for ganglion cell death during the development of the ipsilateral retinal projection in the rat, Dev. Brain Res. 2:176–180.

    Article  Google Scholar 

  • Johnson, J. E., Barde, Y.-A., Schwab, M., and Thoenen, H., 1986, Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells, J. Neurosci. 6:3038.

    Google Scholar 

  • Kirby, M. A., and Chalupa, L. M., 1986, Retinal crowding alters the morphology of alpha ganglion cells, J. Comp. Neurol. 251:532–541.

    Article  PubMed  CAS  Google Scholar 

  • Lam, K., Sefton, A. J., and Bennett, M. R., 1982, Loss of axons from the optic nerve of the rat during early postnatal development. Dev. Brain Res. 3:487–491.

    Article  Google Scholar 

  • Leventhal, A. G., 1982, Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and Siamese cats, J.Neurosci. 2:4–1042.

    Google Scholar 

  • Leventhal, A. G., and Schall, J. D., 1983, Structural basis of orientation sensitivity of cat retinal ganglion cells, J. Comp. Neurol. 220:465–475.

    Article  PubMed  CAS  Google Scholar 

  • Levick, W. R., and Thibos, L. N., 1982, Analysis of orientation bias in cat retina, J. Physiol. (London) 329:243–261.

    CAS  Google Scholar 

  • Linden, R., and Perry, V. H., 1982, Ganglion cell death within the developing retina: A regulatory role for ganglion cell dendrites? Neuroscience 11:2813–2827.

    Article  Google Scholar 

  • Linden, R., and Serfaty, C. A., 1985, Evidence for differential effects of terminal and dendritic competition upon developmental neuronal death in the retina, Neuroscience 15:853–868.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S. A., 1986, Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture, Proc. Natl. Acad. Sei. U.S.A. 83:9774–9778.

    Article  CAS  Google Scholar 

  • Maffei, L., and Perry, V. H., 1988, The axon initial segment as a possible determinant of ganglion cell morphology, Dev. Brain Res. 41:185–194.

    Article  Google Scholar 

  • Mariani, A. P., Kolb, H., and Nelson, R., 1984, Dopamine containing amacrine cells of the rhesus monkey retina parallels rods in spatial distribution. Brain Res. 322:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Maslim, J., Webster, M., and Stone, J., 1986, Stages in the structural differentiation of retinal ganglion cells, J. Comp. Neurol. 254:382–402.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, B. A., Stevens, J. K., and Sterling, P., 1986, Microcircuitry of beta ganglion cells in cat retina, J.Neurosci. 4:2920–2938.

    Google Scholar 

  • Miller, N. M., and Oberdorfer, M., 1981, Neuronal and neuroglial responses following retinal lesions in the neonatal rat, J. Comp. Neurol. 202:493–504.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R., Famiglietti, E. V., and Kolb, H., 1978, Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina, J. Neurophysiol. 41:472–483.

    PubMed  CAS  Google Scholar 

  • Okado, N., and Oppenheim, R. W., 1984, Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs, J.Neurosci. 4:1639–1652.

    PubMed  CAS  Google Scholar 

  • Oppenheim, R. W., 1981, Neuronal death and some related regressive phenomena during neurogenesis: A selective historical review and progress report, in Studies in Developmental Neurobiology: Essays in Honour of Victor Hamburger (W. M. Cowan, ed.), pp. 74–133, Oxford University Press, New York.

    Google Scholar 

  • Osborne, N. N., and Perry, V. H., 1985, Effects of optic nerve transection on some classes of amacrine cells in the rat retina. Brain Res. 343:230–235.

    Article  PubMed  CAS  Google Scholar 

  • Payne, B. R., Pearson, H. E., and Cornwell, P., 1984, Transneuronal degeneration of beta retinal ganglion cells in the cat, Proc. R. Soc. London Ser. B 222:15–32.

    Article  CAS  Google Scholar 

  • Perry, V. H., 1979, The ganglion cell layer of the rat retina: A Golgi study, Proc. R. Soc. London Ser. B 204:363–375.

    Article  CAS  Google Scholar 

  • Perry, V. H., 1981, Evidence for an amacrine cell system in the ganglion cell layer of the rat retina, Neuroscience 5:931–944.

    Article  Google Scholar 

  • Perry, V. H., 1984, The development of ganglion cell mosaics, in Development of Visual Pathways in Mammals (J. Stone, B. Dreher, and D. H. Rappaport, eds.), pp. 57–73, Alan Liss, New York.

    Google Scholar 

  • Perry, V. H., and Cowey, A., 1982, A sensitive period for ganglion cell degeneration and theformation of aberrant retinofugal connections following tectal lesions in rats, Neuroscience 7:583–594.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V. H., and Linden, R., 1982, Evidence for dendritic competition in the developing retina, Nature (London) 297:683–685.

    Article  CAS  Google Scholar 

  • Perry, V. H., and Maffei, L., 1988, Dendritic competition: Competition for what? Dev. Brain Res. 41:195–208.

    Article  Google Scholar 

  • Perry, V. H., and Walker, M., 1980, Morphology of cells in the ganglion cell layer during development of the rat retina, Proc. R. Soc. London Ser. B 208:433–455.

    Article  CAS  Google Scholar 

  • Perry, V. H., and Silveira, L. C. L., 1988, Functional lamination in the ganglion cell layer of the macaque’s retina, Neuroscience 25:217–223.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V. H., Linden, R., and Henderson, Z., 1983, Postnatal changes iii retinal ganglion cell and optic axon populations in the pigmented rat, J. Camp. Neurol. 219:356–368.

    Article  CAS  Google Scholar 

  • Perry, V. H., Oehler, R., and Cowey, A., 1984, Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey, Neuroscience 12:1101–1123.

    Article  PubMed  CAS  Google Scholar 

  • Polyak, S. L., 1941, The Retina, University of Chicago Press, Chicago.

    Google Scholar 

  • Potts, R. A., Dreher, B., and Bennett, M. R., 1982, The loss of ganglion cells in the developing retina of the rat. Dev. Brain Res. 3:481–486.

    Article  Google Scholar 

  • Rappaport, D. H., and Stone, J., 1982, The site of commencement of maturation in mammalian retina: Observations in the cat. Dev. Brain Res. 5:273–279.

    Article  Google Scholar 

  • Rowe, M. H., and Dreher, B., 1982, Functional morphology of beta cells in the area centralis of cat’s retina: A model for the evolution of central specializations. Brain Behav. Evol. 21:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Saito, H. A., 1983, Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat, J. Comp. Neurol. 221:279–288.

    Article  PubMed  CAS  Google Scholar 

  • Schall, J. D., and Leventhal, A. G., 1987, Relationships between ganglion cell dendritic structure and retinal topography in the cat, J. Comp. Neurol. 257:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Schall, J. D., Vitek, D. J., and Leventhal, A. G., 1986, Retinal constraints on orientation specificity in cat visual cortex, J.Neurosci. 6:823–836.

    PubMed  CAS  Google Scholar 

  • Sengelaub, D. R., and Finlay, B. L., 1981, Early removal of one eye reduces naturally occurring cell death in the remaining eye. Science 213:573–574.

    Article  PubMed  CAS  Google Scholar 

  • Sefton, A. J., Lund, R. D., and Perry, V. H., 1987, Target regions enhance the outgrowth and survival of ganglion cells in embryonic retina transplanted to cerebral cortex in neonatal rats, Dev.Brain Res. 33:145–149.

    Article  Google Scholar 

  • Sidman, R. L., 1961, Histogenesis of mouse retina studied with thymidine-3H, in The Structure of the Eye (G. K. Smelser, ed.), Academic Press, Orlando, FL.

    Google Scholar 

  • Sosula, L., and Glow, P. H., 1970, A quantitative ultrastructural study of the inner plexiform layer of the rat retina, J. Comp. Neurol. 140:439–478.

    Article  PubMed  CAS  Google Scholar 

  • Sutter, A., Hosang, M., Vale, R. D., and Shooter, E. M., 1984, The interaction with nerve growth factor with its specific receptors, inCellular and Molecular Biology of Neuronal Development (L B. Black, ed.), pp. 201–214, Plenum Press, New York.

    Chapter  Google Scholar 

  • Tauchi, M., and Masland, R. H., 1984, The shape and arrangement of the cholinergic neurons in the rabbit retina, Proc. R. Soc. London Ser. B 223:101–119.

    Article  CAS  Google Scholar 

  • Tauchi, M., and Masland, R. H., 1985, Local order among the dendrites of an amacrine cell population, J.Neurosci. 9:2494–2501.

    Google Scholar 

  • Tong, L., Spear, P. D., Kalil, R. E., and Callahan, E. C., 1982, Loss of retinal X-cells in cats with neonate or adult visual cortex damage. Science 217:72–75.

    Article  PubMed  CAS  Google Scholar 

  • Turner, D. L., and Cepko, C. L., 1987, A common progenitor for neurons and glia persists in rat retina late in development, Nature (London) 328:131–136.

    Article  CAS  Google Scholar 

  • Van Buren, K. M., 1963, The Retinal Ganglion Cell Layer, Charles C. Thomas, Springfield, IL.

    Google Scholar 

  • Vaney, D. I., 1984, “Coronate” cells in the rabbit retina have the “starburst” dendritic morphology, Proc. R. Soc. London Ser. B 220:501–508.

    Article  CAS  Google Scholar 

  • Vaney, D. I., 1985, The morphology and topographic distribution of All amacrine cells in the cat retina, Proc. R. Soc. London Ser. B 224:475–488.

    Article  CAS  Google Scholar 

  • Vaney, D. I., 1986, Morphological identification of serotonin accumulating neurons in the living retina. Science 223:444–446.

    Article  Google Scholar 

  • Voigt, T., 1986, Cholinergic amacrine cells in the rat retina, J. Comp. Neurol. 248:19–35.

    Article  CAS  Google Scholar 

  • Wässle, H., and Riemann, H. J., 1978, The mosaic of nerve cells in the mammalian retina, Proc. R. Soc. London Ser. B 200:441–461.

    Article  Google Scholar 

  • Wässle, H., Peichl, L., and Boycott, B. B., 1981a, Dendritic territories of cat retinal ganglion cells. Nature (London 292:344–345.

    Article  Google Scholar 

  • Wässle, H., Peichl, L., and Boycott, B. B., 1981b, Morphology and topography of on- and off- alpha cells in the cat retina, Proc. R. Soc. London Ser. B 212:157–175.

    Article  Google Scholar 

  • Wässle, H., Boycott, B. B., and Illing, R.-B., 1981c, Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations, Proc. R. Soc. London Ser. B 212:177- 195.

    Article  Google Scholar 

  • Weidman, T. A., and Kuwabara, T., 1968, Postnatal development of the rat retina. Arch. Ophthalmol. 79:470–484.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., 1986, Growth cones, dying axons, and developmental fluctuations in the fiber population in the cat optic nerve, J. Comp. Neurol. 246:32–69.

    Article  PubMed  CAS  Google Scholar 

  • Young, R. W., 1985, Cell differentiation in the retina of the mouse, Anat. Ree. 212:199–205.

    Article  CAS  Google Scholar 

  • Young, R. W., 1986, Cell death during differentiation of the retina, J. Comp. Neurol. 229:362–373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Perry, V.H. (1989). Dendritic Interactions between Cell Populations in the Developing Retina. In: Finlay, B.L., Sengelaub, D.R. (eds) Development of the Vertebrate Retina. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5592-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5592-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5594-6

  • Online ISBN: 978-1-4684-5592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics