Skip to main content

Part of the book series: Perspectives in Vision Research ((PIVR))

Abstract

The vertebrate eye originally evolved as an underwater visual organ; thus, all vertebrate eyes share a common set of structural properties. This is in striking contrast to the enormous variety of eye types found among invertebrates. Despite the fundamentally similar ocular architecture that exists throughout vertebrate phylogeny, there are still significant differences among eyes. Specifically, fishes, which comprise more than half the extant vertebrate species, have eyes that grow throughout their lifetimes. The advantages of a larger eye are the greater light-capturing ability for deep-sea fish and higher acuity for surface dwellers (for details, see Fernald, 1988).

A scientist must also be absolutely like a child. If he sees a thing, he must say that he sees it, whether it was what he thought he was going to see or not. See first, think later, then test. But always see first. Otherwise you will only see what you were expecting.

Douglas Adams, So Long and Thanks for All the Fish

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlbert, I. B., 1973, Ontogeny of double cones in the retina of perch fry (Perca fluviatillis, Teleostei), Acta Zool (Stockholm) 54:241–254.

    Article  Google Scholar 

  • Ahlbert, LB., 1976, Organization of the cone cells in the retinae of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zool. (Stockholm) 57:13–35.

    Article  Google Scholar 

  • Baburina, E. A., 1955, The eye of the retina in the Caspian shad, Dokl. Akad. Nauk. S.S.S.R. 100:1167–1170.

    CAS  Google Scholar 

  • Birukow, G., 1949, Die Entwicklung des Tages- und Dämmerungssehens im Auge des Grasfrosches (Rana temporaria), Z. Vergl Physiol 31:322–347.

    Article  CAS  Google Scholar 

  • Blaxter, J. H. S., 1975, The eyes of larval fish, in Vision in Fishes (M. A. Ali, ed.), pp. 427–443, Plenum Press, New York.

    Google Scholar 

  • Blaxter, J. H. S., and Jones, M. P., 1967, The development of the retina and retinomotor responses in the herring, J. Mar. Biol. U.K. 47:677–697.

    Article  Google Scholar 

  • Carter-Dawson, L. D., and La Veil, M. M., 1979, Rods and cones in the mouse retina. IL Autoradiographic analysis of cell generation using tritiated thymidine, J. Comp. Neurol. 188:263–272.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R. D., 1983, Neural basis of visual pattern recognition in fish, in Advances in Vertebrate Neuroethology (J.-P. Ewert, R. R. Capranica, and D.J. Ingle, eds.), pp. 569–580, Plenum Press, New York.

    Google Scholar 

  • Fernald, R. D., 1984, Vision and behavior in an African cichlid fish, Am. Sci. 72(l):58–65.

    Google Scholar 

  • Fernald, R. D., 1985, Growth of the teleost eye: Novel solutions to complex constraints, Env. Biol. Fish 13:113–123.

    Article  Google Scholar 

  • Fernald, R. D., 1988, Aquatic adaptations in fish eyes, in Sensory Biology of Aquatic Animals (J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga, eds.), pp. 435–465, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Fernald, R. D., and Johns, P., 1980a, Retinal structure and growth in the cichlid fish, Invest. Ophthal, Vis. Sci. (Suppl.) 69.

    Google Scholar 

  • Fernald, R. D., and Johns, P., 1980b, Retinal specialization and growth in the cichlid fish, H. burtoni, Am. Zool. 20:943.

    Google Scholar 

  • Fernald, R. D., and Scholes, J., 1985, A zone of exclusive rod neurogenesis in the teleost retina, Soc. Neurosci. Abstr. 11:810.

    Google Scholar 

  • Fernald, R. D., and Scholes, J., 1988, Retinal neurogenesis in teleosts: A second germinal zone, in press.

    Google Scholar 

  • Fernald, R. D., and Shelton, L., 1986, Zone of exclusive rod neurogenesis in teleost retina arises late in embryogenesis, Soc. Neurosci. Abstr. 11:389.

    Google Scholar 

  • Hollyfield, J. G., 1972, Histogenesis of the retina in the killifish Fundulus heteroclitus, J. Comp. Neurol 144(3):373–380.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P. R., 1976, Synaptic connections must change in the adult goldfish retina, Neurosci. Abstr. 6:826.

    Google Scholar 

  • Johns, P. R., 1977, Growth of the adult goldfish eye. IIL Source of the new retinal cells, J. Comp. Neurol. l76(3):343–357.

    Article  Google Scholar 

  • Johns, P. R., and Easter, S. S., 1977, Growth of the adult goldfish eye. XL Increase in retinal cell number, J. Comp. Neurol. 176(3):331–341.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P. R., and Fernald, R. D., 1981, Genesis of rods in teleost fish retina. Nature (London) 293:141–142.

    Article  CAS  Google Scholar 

  • Lüdtke, H., 1940, Die embryonale und postembryonale Entwicklung des Auges bei Notonecta glauca, Z. Morphol. Oekol. Tiere 37(1): 1–37.

    Article  Google Scholar 

  • Lyall, A. H., 1957a, The growth of the trout retina, Q. J. Microsc. Sci. 98:101–110.

    Google Scholar 

  • Lyall, A. H., 1957b, Cone arrangements in teleost retinae, Q. J. Microsc. Sci. 98:189–201.

    Google Scholar 

  • Meyer, R. L., 1978, Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile gold fish, Exp. Neurol. 59:99–111.

    Article  PubMed  CAS  Google Scholar 

  • Möller, A., 1950, Die Struktur des Auges bei Urodelen verschiedener Körpergrösse, Zool. Jahrb. Abt. Zool. Physiol. Tiere 62(2): 138–182.

    Google Scholar 

  • Müller, H., 1952, Bau und Wachstum der Netzhaut des Guppy, Zool. Jahrb. 63:275–324.

    Google Scholar 

  • Münk, O., and J0rgensen, J. M., 1983, Mitoses in the retina of two deep-sea teleosts, Vidensk. Medd. Dan. Naturhist. Foren. Khobenhavn 144:75–81.

    Google Scholar 

  • Sandy, J. M., and Blaxter, J. H. S., 1980, A study of retinal development in larval herring and sole, J. Mal. Biol. Assoc. U.K. 60:59–71.

    Article  Google Scholar 

  • Scholes, J. H., 1976, Neuronal connections and cellular arrangement in the fish retina, in Neural Principles Vision (F. Zettler and R. Weiler, eds.), pp. 63–93, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Vilter, V., and Zewin, L., 1954, Existence et repartition des mitoses dans la retine d’un poisson abyssal, Ba hylagus benedicti, C. R. Soc. Biol. 148:1771–1775.

    CAS  Google Scholar 

  • Wunder, W., 1926, Ãœber den Bau der Netzhaut von Süsswasser fischen, die in grosser Tiefe leben, Z. Vrg. J Physiol. 4(l):22–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Fernald, R.D. (1989). Retinal Rod Neurogenesis. In: Finlay, B.L., Sengelaub, D.R. (eds) Development of the Vertebrate Retina. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5592-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5592-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5594-6

  • Online ISBN: 978-1-4684-5592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics