Skip to main content

Part of the book series: Perspectives in Vision Research ((PIVR))

Abstract

All vertebrate eyes have evolved from those of common underwater living ancestors and consequently are strikingly similar structures which form an image with a single lens. In contrast, invertebrates have a rich variety of eye types which form images in one of three ways: with single lenses, multiple lenses, or mirrors (Land, 1984). Since eyes must obey fundamental optical laws, physical constraints on eye design and structure provide the most straightforward means of understanding the adaptive value of ocular specializations. Using these physical constraints, inferences about the selective forces that have undoubtedly “shaped” eyes can be made with some confidence, particularly in the study of aquatic eyes. In contrast, in the analysis of ocular development there is no corresponding a priori knowledge of fundamental constraints to aid in interpreting these developmental processes. Developmental similarities themselves must serve to guide our understanding of these processes. Phylogenetic comparisons offer significant advantages because the modifications that have occurred during evolutionary time are carried in organisms and are most evident during development.

Article Notes

To suppose that the eye with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, absurd in the highest degree.

Charles Darwin, The Origin of the Species

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, E. E., and Fernald, R. D., 1985, Scotopic visual threshold in the African cichlid fish Haplochromis burtoni, J. Comp. Physiol. 157:247–253.

    Article  CAS  Google Scholar 

  • Baerends, G. P., and Baerends-Van Roon, J. M., 1950, An introduction to the ethology of cichlid fishes. Behaviour (Suppl.) 1:1–243.

    Google Scholar 

  • Baerends, G. P., Bennema, B. E., and Vogelzang, A. A., 1960, Ueber die anderung der sehscharfe mit dem Wachstum bei Aequidens portalegrensis (Hensel) (Pisces, cichlidae), Zool. Jahrb. Allg. Syst. Oko. 88:67–78.

    Google Scholar 

  • Beer, T., 1894, Die accommodation des fischauges. Pflugers Arch. Gesamte Physiol. Menschen Tiere 58:523–650.

    Article  Google Scholar 

  • Brewster, D., 1816, On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light, Philos. Trans. R. Soc. London 311–317.

    Google Scholar 

  • Darwin, C., 1987, Origin of Species, abridged and introduced by Richard Leakey, Rainbird Publishing Group, London.

    Google Scholar 

  • Davis, M. R., and Fernald, R. D., 1986, Social environment modulates the development of a forebrain peptidergic nucleus in the cichlid fish, Haplochromis burtoni, Soc. Neurosci. Abstr. 11:1283.

    Google Scholar 

  • Easter, S. S., Johns, P. R., and Baumann, L. R., 1977, Growth of the adult goldfish eye. I. Optics, Vision Res. 16:469–476.

    Article  Google Scholar 

  • Eigenmann, C. H., and Shafer, G. D., 1900, The mosaic of single and twin cones in the retina of fishes, Am. Natural 34:109–118.

    Article  Google Scholar 

  • Fernald, R. D., 1975, Fast body turns in a cichlid fish. Nature (London) 258:228–229.

    Article  Google Scholar 

  • Fernald, R. D., 1977, Quantitative behavioral observations of Haplochromis burtoni under semi- natural conditions, Anim. Behav. 25:643–653.

    Article  Google Scholar 

  • Fernald, R. D., 1980a, Optic nerve distention in a cichlid fish. Vision Res. 20:1015–1019.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R. D., 1980b, Responses of male Haplochromis burtoni reared in isolation to models of conspecifics, Z. Tierpsychol 54:85–93.

    Article  Google Scholar 

  • Fernald, R. D., 1981a, Visual field and retinal projections in the African cichlid fish, Neurosci. Abstr. 7:844.

    Google Scholar 

  • Fernald, R. D., 1981b, Chromatic organization of the cichlid fish retina. Vision Res. 20:1749–1753.

    Article  Google Scholar 

  • Fernald, R. D., 1982, Retinal projections in the African cichlid fish, Haplochromis burtoni, J. Comp. Neurol. 206:379–389.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R. D., 1983, Neural basis of visual pattern recognition in fish, in Advances in Vertebrate Neuroethology (J. P. Ewert, R. R. Caparnica, and D.J. Ingle, eds.), pp. 569–580, Plenum Press, New York.

    Google Scholar 

  • Fernald, R. D., 1984, Vision and behavior in an African cichlid fish. Am. Sci. 72:58–65.

    Google Scholar 

  • Fernald, R. D., 1985a, Growth of the teleost eye: Novel solutions to complex constraints, Environ. Biol. Fish. 13:113–123.

    Article  Google Scholar 

  • Fernald, R. D., 1985b, Eye movements in the African cichlid fish, Haplochromis burtoni, J. Comp. Physiol. 156:199–208.

    Article  Google Scholar 

  • Fernald, R. D., 1987, Aquatic adaptations in fish eyes, in Sensory Biology of Aquatic Animals (J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga, eds.). Chap. 19, Springer-Verlag, New York.

    Google Scholar 

  • Fernald, R. D., and Hirata, N., 1975, Non-intentional sound production in a cichlid fish (Haplochromis burtoni, Gunther), Experientia 31:299–300.

    Article  PubMed  Google Scholar 

  • Fernald, R. D., and Hirata, N., 1977a, Field study of Haplochromis burtoni Quantitative behavioral observations, Anim. Behav. 25:964–975.

    Article  Google Scholar 

  • Fernald, R. D., and Hirata, N., 1977b, Field study of Haplochromis burtoni Habitats and co- habitats, Environ. Biol. 2:299–308.

    Article  Google Scholar 

  • Fernald, R. D., and Hirata, N., 1979, The ontogeny of social behavior and body coloration in the African cichlid fish,Haplochromis burtoni, Z. Tierpsychol. 50:180–187.

    Google Scholar 

  • Fernald, R. D., and Liebman, P. A., 1980, Visual receptor pigments in the African cichlid fish, Haplochromis burtoni, Vision Res. 20:857–864.

    Article  CAS  Google Scholar 

  • Fernald, R. D., and Wright, S. E., 1983, Maintenance of optical quality during crystalline lens growth. Nature (London) 301:618–620.

    Article  CAS  Google Scholar 

  • Fernald, R. D., and Wright, S. E., 1985a, Growth of the visual system of the African cichlid fish, H. burtoni Optics, Vision Res. 25:155–161.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R. D., and Wright, S. E., 1985b, Growth of the visual system of the African cichlid fish, H. burtoni Accommodation, Vision Res. 25:163–170.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R. D., McDonald, R., and Korenbrot, J., 1987, Light-dark cycle of opsin mRNA production in toad and fish, Invest. Ophthalmol. Visual Sci. (Suppl.) 28(3): 184.

    Google Scholar 

  • Fernald, R. D., Wright, S. E., and Shelton, L., 1988, Growth of the visual system of the African cichlid fish, H. burtoni Optic field and retinal field, in press.

    Google Scholar 

  • Fraley, N. B., and Fernald, R. D., 1982, Social control of development rate in the African cichlid fish, Haplochromis burtoni, Z. Tierpsychol. 60:66–82.

    Google Scholar 

  • Fryer, G., and lies, T. D., 1972, in Cichlid Fishes of the Great Lakes of Africa, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Geiger, W., 1956, Quantitative Untersuchungen über das gehirn der knochenfische, mit besondere Berücksichtigung seines relativen Wachstums, Acta Anat. 26:121–163; 27:324–350.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, P. H., 1981, Species flocks and explosive evolution, in Chance, Change and Challenge— The Evolving Biosphere (P. H. Greenwood and P. L. Foley, eds.), pp. 61–74, Cambridge University Press and the British Museum, London.

    Google Scholar 

  • Hairston, N. G., Li, K. T., and Easter, S. S., 1982, Fish vision and the detection of planktonic prey. Science 218:1240–1242.

    Article  PubMed  Google Scholar 

  • Heiligenberg, W., and Kramer, U., 1972, Aggressiveness as a function of external stimulation, J. Comp. Physiol. 77:332–340.

    Article  Google Scholar 

  • Heiligenberg, W., Kramer, U., and Schultz, V., 1972, The angular orientation of the black eye- bar in Haplochromis burtoni (cichlidae, pisces) and its relevance to aggressivity, Z.Vergl. Physiol. 76:168–176.

    Article  Google Scholar 

  • Heine, C., 1901, Demonstration der zapfenmosaiks der menschlichen fovea, Dtsch. Ophthalmol. Ges. Ber. Vers. 19:265–266.

    Google Scholar 

  • Hueter, R. E., and Gruber, S. H., 1980, Retinoscopy of aquatic eye. Vision Res. 20:197–200.

    Article  PubMed  CAS  Google Scholar 

  • Kahmann, H., 1936, Uber das foveale sehen der Wirbeltiere. I. Uber die fovea centralis und die fovea lateralis bei einigen Wirbeltieren, Albrecht von Graefe’s Arch. Ophthalmol. 135: 265–276.

    Article  Google Scholar 

  • Land, M., 1984, Crustacea, in Photoreception and Vision in Invertebrates (M. A. Ali, ed.), pp. 401–438, Plenum Press, New York.

    Google Scholar 

  • Leong, C. Y., 1969, Quantitative effect of releasers in the attack readiness of the fish Haplochromis burtoni, Z. Vergl. Physiol 65:29–50.

    Article  Google Scholar 

  • Liem, K. F., and Osse, J. W. M., 1975, Biological versatility, evolution and food resources, exploitation in African cichlid fishes. Am. Zool 15:427–454.

    Google Scholar 

  • Lyall, A. H., 1957, The growth of the trout retina, Q. J. Microsc. Sci. 98:101–110.

    Google Scholar 

  • Marc, R. E., and Sperling, H. G., 1976, Color receptor identities of goldfish cones. Science 191:487–489.

    Article  PubMed  CAS  Google Scholar 

  • Matthiessen, L., 1882, Uber die beziehungen, welche zwishen dem brechungsindex des kernzentrums der krystalllinse und den dimensionen des auges bestehen, Pflugers Arch. Ges. Physiol. 27:510–523.

    Article  Google Scholar 

  • Maxwell, J. C., 1854, Some solutions of problems, Camb. Dubl. Math. J. 8:188–195.

    Google Scholar 

  • Meyer, R. L., 1978, Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish, Exp. Neurol. 59:99–111.

    Article  PubMed  CAS  Google Scholar 

  • Müller, H., 1952, Bau und Wachstum der Netzhaut des guppy, Lebistes reticulatus, Abt. Allg. Zool. Physiol. Tiere 63:275–324.

    Google Scholar 

  • Muske, L. F., and Fernald, R. D., 1987a, Control of teleost social signal: Neural basis for differential expression of a color pattern, J. Comp. Physiol. 160:89–97.

    Article  CAS  Google Scholar 

  • Muske, L. E., and Fernald, R. D., 1987b, Control of teleost social signal: Anatomical and physiological specializations of chromatophores, J. Comp. Physiol. 160:99–107.

    Article  CAS  Google Scholar 

  • Nuboer, J. F. W., and van Genderen-Takken, H., 1978, The artifact of retinoscopy. Vision Res. 18:1091–1096.

    Article  PubMed  CAS  Google Scholar 

  • Poll, M., 1956, Poissons cichlidae. Result Sci. Explor. Hydrobiol. Lake Tanganika (1946–47) 3:501–619.

    Google Scholar 

  • Powers, M. K., and Bassi, C. J., 1981, Absolute visual threshold is determined by the proportion of stimulated rods in the growing goldfish retina, Neurosei. Abstr. 7:541.

    Google Scholar 

  • Pumphrey, R. J., 1961, Concerning vision, in The Cell and Organism (J. A. Ramsey, ed.), pp. 193–208, Cambridge University Press, Cambridge.

    Google Scholar 

  • Regan, C. T., 1920, The classification of the fishes of the family cichlidae. I. The Tanganyika genera, Annu. Mag. Natl. Hist. 5:33–53.

    Google Scholar 

  • Scholes, J. H., 1976, Neuronal connections and cellular arrangement in the fish retina, in Neural Principles in Vision (F. Zettler and R. Weiler, eds.), pp. 63–93, Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Schultze, M., 1866, Zur anatomic und physiologic der retina. Arch. Microsk. Anat. Entwieklungsmech. 2:165–174.

    Google Scholar 

  • Wagner, H. J., 1974, Development of the retina of Nannacara’anomala, with reference to regional variations in differentiation, Z. Morphol. Tiere 79:113–131.

    Article  Google Scholar 

  • Young, T., 1801, On the mechanism of the eye, Philos. Trans. 92:23–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Fernald, R.D. (1989). Fish Vision. In: Finlay, B.L., Sengelaub, D.R. (eds) Development of the Vertebrate Retina. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5592-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5592-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5594-6

  • Online ISBN: 978-1-4684-5592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics