Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 188))

  • 500 Accesses

Abstract

Recent new developments and applications of the scanning transmission microscope(STEM) have stimulated renewed interest in the interaction of high-energy electron beams with small particles and surfaces[1–7]. Usually the classical theory of energy loss has been employed to analyze the experimental energy-loss spectra for planar, spherical or cylindrical geometries [8–14]. A new general approach, based on the self-energy formalism of the many body problem has been presented recently[15]. In this approach, the mean potential energy Σo of the incoming electron, in a state defined by a wave function ψo(r) and energy Eo is written as the average of an effective local potential Veff(r), representing the complex interaction of the incoming electron with the many body target

$${\Sigma_o}=\int{\psi_o^*} (\bar r){V_{eff}}(r){\psi_o}(\bar r)dr$$
((1))

We use atomic units (e2 = h = m) throughout this paper. The real part of Σo gives us the lowering of the energy of the particle due to virtual excitations of the medium, and the imaginary part is directly related to the probability of energy loss due to creation of real excitations. The effective potential is written as a spatial integral of the non local self-energy[16], Σ (r, r’, Eo), which in turn can be expressed in terms of the Green’s function G(r, r’, ω+E0) and the causal screened interaction W(r, r’, ω)[16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. E. Batson, Solid State Commun. 34:447 (1980).

    Article  ADS  Google Scholar 

  2. P. E. Batson, Ultramicroscopy 9:277 (1982).

    Article  Google Scholar 

  3. P. E. Batson, Phys.Rev.Lett. 49:936 (1982).

    Article  ADS  Google Scholar 

  4. J. M. Cowley, Surf.Sci. 114:587 (1982).

    Article  ADS  Google Scholar 

  5. J. M. Cowley, Phys.Rev. B25:1407 (1982).

    ADS  Google Scholar 

  6. C. Colliex, Ultramicroscopy 18:131 (1985).

    Article  Google Scholar 

  7. A. Howie and R. H. Milne, J.Microscopy 136:279 (1984).

    Article  Google Scholar 

  8. A. Howie, Ultramicroscopy 11:141 (1983).

    Article  Google Scholar 

  9. A. Howie and R. H. Milne, Ultramicroscopy 18:427 (1985).

    Article  Google Scholar 

  10. T. L. Ferrell and P. M. Echenique, Phys.Rev.Lett. 55:1526 (1985).

    Article  ADS  Google Scholar 

  11. P. M. Echenique, A. Howie and D. J. Wheatley, Phil.Mag. B56, 335 (1987).

    Google Scholar 

  12. T. L. Ferrell, R. L. Warmack, V. E. Anderson and P. M. Echenique, Phys.Rev. B35:7365 (1987).

    ADS  Google Scholar 

  13. Z. L. Wang and J. M. Cowley, Ultramicroscopy 21:77 (1987).

    Article  Google Scholar 

  14. N. Zabala, A. Rivacoba and P. M. Echenique, to be published.

    Google Scholar 

  15. P. M. Echenique, J. Bausells and A. Rivacoba, Phys.Rev. B35:1521 (1987).

    ADS  Google Scholar 

  16. L. Medin and S. Lundqvist, Solid State Physics 23:1 (1969).

    Google Scholar 

  17. J. D. Jackson, Classical Electrodynamics, 2nd Ed. Wiley, New York (1975).

    MATH  Google Scholar 

  18. F. Fujimoto and Komaki, J.Phys.Soc.Japan 25:1679 (1968).

    Article  ADS  Google Scholar 

  19. N. Barberán and J. Bausells, Phys.Rev. B31:6354 (1985).

    ADS  Google Scholar 

  20. J. Bausells, A. Rivacoba and P.M. Echenique, to be published.

    Google Scholar 

  21. P. E. Batson and M. J. Treacy, in; “Proceedings of the Electron Microscopy Society of America,” San Francisco, California (Claitor’s, Baton Rouge) (1980).

    Google Scholar 

  22. H. J. Hagemann, W. Gudat and C. Kunz, Deutsches Elektronen Synchrotron Report No. DESY-SR-74/7 (unpublished).

    Google Scholar 

  23. M. Schmeits, J. Phys C 14:1203 (1981).

    Article  ADS  Google Scholar 

  24. H. Kohl, Ultramicroscopy 11:53 (1983).

    Article  Google Scholar 

  25. J. Bausells, A. Rivacoba and P. M. Echenique, Surf.Sci., 189/190, 1015 (1987).

    Article  ADS  Google Scholar 

  26. S. Munnix and M. Schmeits, Phys.Rev. B32:4192 (1985).

    ADS  Google Scholar 

  27. R. H. Ritchie and A. Howie, to be published.

    Google Scholar 

  28. R. H. Ritchie and A. L. Marusak, Surf.Science 4:234 (1966).

    Article  ADS  Google Scholar 

  29. P. M. Echenique, Phil.Mag. B52:L9 (1985).

    Google Scholar 

  30. R. García-Molina, A. Gras-Martí, A. Howie and R. H. Ritchie, J.Phys. C18:5335 (1985).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Echenique, P.M. (1988). Excitation of Dielectric Spheres by Electron Beams. In: Larsen, P.K., Dobson, P.J. (eds) Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces. NATO ASI Series, vol 188. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5580-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5580-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5582-3

  • Online ISBN: 978-1-4684-5580-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics